

CLIENT:Mardie Minerals Pty LtdSTATUS:FinalREPORT No.:R190033ISSUE DATE:13st June 2019

Important Note

This report and all its components (including images, audio, video, text) is copyright. Apart from fair dealing for the purposes of private study, research, criticism or review as permitted under the Copyright Act 1968, no part may be reproduced, copied, transmitted in any form or by any means (electronic, mechanical or graphic) without the prior written permission of O2 Marine.

This report has been prepared for the sole use of the **Mardie Minerals Ltd** (herein, 'the Client'), for a specific site (herein 'the site', the specific purpose specified in Section 1 of this report (herein 'the purpose'). This report is strictly limited for use by the client, to the purpose and site and may not be used for any other purposes.

Third parties, excluding regulatory agencies assessing an application in relation to the purpose, may not rely on this report. O2 Marine waives all liability to any third-party loss, damage, liability or claim arising out of or incidental to a third-party publishing, using or relying on the facts, content, opinions or subject matter contained in this report.

O2 Marine waives all responsibility for loss or damage where the accuracy and effectiveness of information provided by the Client or other third parties was inaccurate or not up to date and was relied upon, wholly or in part in reporting.

WA Marine Pty Ltd t/as O2 Marine ACN 168 014 819 Originating Office – Southwest Suite 5, 18 Griffin Drive, Dunsborough WA 6281 T 1300 739 447 | info@o2marine.com.au

Version Register

Version	Status	Author	Reviewer	Change from Previous Version	Authorised for Release (signed and dated)
Rev A	DRAFT	M Wellington	C Del Deo		
Rev B	DRAFT	T Hurley	C Lane		
Rev 0	Final	T Hurley	N Turnbull		C Lane

Transmission Register

Controlled copies of this document are issued to the persons/companies listed below. Any copy of this report held by persons not listed in this register is deemed uncontrolled. Updated versions of this report if issued will be released to all parties listed below via the email address listed.

Name	Email Address
Neil Dixon	Neil.Dixon@bciminerals.com.au

Executive Summary

Mardie Minerals Pty Ltd is proposing to develop a Salt and Potash marine export facility as part of a salt production project (The Mardie Project). The Mardie Project involves dredging up to 500,000 cubic metres of sediment and construction and operations of a trestle jetty extending 3.4 km into sub-tidal marine waters at Mardie in the Pilbara, WA. This document addresses requirements of the Environmental Scoping Document (ESD) developed for the Mardie Project to implement a baseline marine sediment quality investigation for the derivation of environmental quality criteria (EQC), to identify potential acid sulfate sediments that could be disturbed and for consideration of the *Environmental Protection (Sea dumping) Act 1981* and associated guidance during development of the Dredging and Spoil Disposal Management Plan (DSDMP).

Sediment sampling took place over three separate field campaigns in December 2018, January 2019 and March 2019. The marine project footprint was revised following the first two sampling events, with one further sampling event conducted following modification of the marine project design. Sediment samples were collected using a combination of vibro-coring, surface grab sampling and diver-coring from thirty-two (32) sites with 34 samples collected in total (excluding QA/QC samples). The vibro-corer experienced refusal at 0.5 m depth on hard substrate (i.e. gravel and/or limestone layers) at all locations except two (2) where samples were collected up to 1 m depth and subsamples were collected from two horizons; 0 m to 0.5 m and 0.5 m to 1 m. The sediment samples were analysed for physical properties (PSD), Metals and metalloids (AI, Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Sb, V and Zn), Organic compounds (TPH/TRH, BTEXN, PAHs, TBT), Nutrients (TN, TKN, NH4, NO2+NO3, TP, FRP), Pesticides, Potential acid sulfate soils (PASS) and Benthic infauna. The results are compared to relevant sediment quality guidelines (SQGs) where appropriate.

The samples collected within the nearshore proposed Development Envelope at Mardie are comprised of uncontaminated sediments and are considered suitable for onshore disposal. The background sediment quality at the site is considered to be representative of natural environmental conditions that are largely un-impacted by anthropogenic influences. However, some concentrations for metals and nutrients in sediments are naturally higher than recorded for marine sediment programs in other areas of the Pilbara, Western Australia, and revised site-specific EQC are recommended.

Physical Characteristics

The colour of the sediment samples varied from brown/grey, grey/red/, dark grey, red/brown, dark brown to brown. Sand and gravel size fractions dominated the particle size distribution (PSD) results from locations within the channel (C1-1 to C8) and the outer channel (OC1-OC3) of the original dredge footprint, and within the revised dredge footprint sample area (RF1-RF6).

Sites closer to shore within the turning basin (TB1-TB10), around the outfall (O1-O3) and the inner channel (C9-C11) of the original footprint sediment samples were comprised of a higher proportion of fines (i.e. silt and clay).

The total organic carbon (TOC) levels were typically low across the survey area, although notably lower proportions of TOC and moisture were found in samples collected closer to shore of the original dredge footprint, between the original proposed turning basin and revised dredge sample area.

Metals and Metalloids

The results for total metals in sediment from the Mardie Project area indicate the estimated natural background concentrations are typically higher than recorded across the Pilbara region. The 95% Upper Confidence Level (UCL) of the mean were calculated across all 32 sites. The 95% UCL was above the Interim Sediment Quality Guideline (ISQG) low value for arsenic and nickel. In addition, the 95% UCL is above the background SQG for Pilbara waters for aluminium, cobalt, iron and vanadium. Three samples exceed the low reliability guideline value for Manganese. All concentrations for all metals are below EIL and HIL screening levels. The standard deviation of the sample data is less than 50% of the relevant HILs.

Normalisation tests conducted on the results for metals in sediment samples found a strong positive correlation between Aluminium and Iron, although weak correlations for comparison of these natural elements with the <63 µm PSD. The results indicate naturally high levels of trace metals occur in marine sediments in the Development Envelope, likely dependant on the geology and mineralogy of the area, although apparently not strongly correlated to PSD. This is contradictory to findings from other studies in the region where grain size was determined to be the principle factor controlling concentrations of most trace metals in whole sediments (O2 Marine 2018). However, the PSD results collected from the Development Envelope were highly variable. The results may be influenced by terrigenous input from the Fortescue River catchment, similar to DEC (2006) findings of higher natural concentrations in sediments from Ashburton River Mouth compared to levels measured at other locations along the Pilbara coast.

The data for metal contaminants that recorded elevated concentrations (Arsenic, Nickel, Vanadium, Cobalt and Manganese) were graphed against the Aluminium normaliser concentration. A strong positive correlation with Nickel, Cobalt, and Vanadium suggests these metals are lithogenically derived and of natural origin. The normalised results for Nickel are below the ISQG-low value of 21 mg/L, although values for Cobalt and Vanadium remain above the SQG for Pilbara waters. Weak linear correlations are observed between Aluminium and Arsenic or Manganese, therefore normalisation was not undertaken on these metals. DEC (2006) concluded that the ISQG-low value for Arsenic may not be suitable for use across much of the marine environment of the Pilbara region and that alternative guidelines based on local data should be derived. In addition, the Manganese low reliability guideline value was derived from The Ontario Ministry of the Environment and therefore natural exceedance of this value is unlikely to indicate a Contaminant of Potential Concern.

Site-specific EQC have been derived for metals in sediment for the Mardie Project area in accordance with DEC (2006) and EPA (2016).

Organic Compounds

Organic compounds tested included TPH, TRH, BTEXN, PAHs and organotins. All contaminant concentrations are below ANZECC/ARMCANZ (2000) ISQG-low, ESL and HSL values, and the vast majority of organic analytes are below the laboratory LoR. The only organic compounds recorded above the LoR are TPH/TRH concentrations in the larger carbon fractions at seven sites.

EQC for these organic compounds will use values derived in ISQG or the guideline may be no detectable concentration.

Pesticides

All 14 tested Phenoxyacetic Acid Herbicide analytes returned concentrations below the LoR. Herbicides were identified early as a CoPC due to historical use on Mardie Station. This SAP found no evidence of Herbicides in marine sediments.

EQC for these herbicide analytes will use values derived in ISQG or the guideline may be no detectable concentration.

Nutrients

Inorganic forms of nutrients in sediments (NO₂, NO₃, NH₄, FRP) are either below the laboratory LoR, or are recorded at very low concentrations. Results for TKN/TN and TP are therefore likely to be predominantly organically bound and representative of the typically low organic concentrations of sediments of the Pilbara, which must be broken down into inorganic forms to be available for uptake by plants. Concentrations of TKN/TN range from 110 to 500 mg/kg and TP from 179 to 468 mg/kg. However, these concentrations are notably higher than organic material reported in sediments near Onslow which ranged from 30 to 360 mg/kg and 43 to 293 mg/kg, respectively (O2 Marine 2018).

Site-specific EQC have been derived for nutrients in sediment for the Mardie Project area in accordance with DEC (2006) and EPA (2016).

PASS Screening

Values across all sites for pH_F in deionised water range from 7.4 to 9.3, reflecting seawater influence (pH 8.2) and possibly dissolved carbonates typical of sediments in marine systems. The maximum change in pH_F and pH_{FOX} values was 1.7. The reaction to hydrogen peroxide was recorded as "Extreme" in 10 samples. Whilst "Extreme" reactions were recorded in a reasonable number of samples from the site, results from the other two combining factors to identify a 'positive field sulphide identification' were not triggered and it is therefore considered PASS are not detected. The reactions observed were possibly caused from organic material within the sample.

Benthic Infauna

The distribution and abundance of benthic infauna taxa across the survey area is heterogeneous, and there was no significant difference in species richness, diversity or composition identified across sites. The results suggest that it would be difficult to develop EQC for detecting anthropogenic impacts based on the variability of benthic infauna observed within samples. The genus of foraminifera *Quinqueloculina* spp., which is found in relatively high abundance within these sediments, may be considered a good bioindicator for disturbance. These foraminifera have been shown to be sensitive taxa and the faunal composition and morphology respond to human-induced environmental perturbations and extreme responses to natural variations in coastal marine areas. However, further targeted investigation would be required to develop specific biomonitoring EQC.

Acronyms and Abbreviations

Acronyms/Abbreviation	Description
ADAS	Australian Diver Accreditation Scheme
ANZECC	Australian and New Zealand Environment and Conservation Council
ARMCANZ	Agriculture and Resource Management Council of Australia and New Zealand
BTEXN	Benzene, Toluene, Ethylbenzene, Xylenes and Naphthalene
COPC	Contaminants of Potential Concern
DEC	Department of Environment and Conservation
DGV	Default Guideline Values
DoTEE	Department of the Environment and Energy
DWER	Department of Water and Environmental Regulation
EPA	Environmental Protection Authority
EQC	Environmental Quality Criteria
ESD	Environmental Scoping Document
ISQG	Interim Sediment Quality Guideline
LoR	Limit of Reporting
NAGD	National Assessment Guidelines for Dredging
NEPM	National Environment Protection Measures
NWS	North-West Shelf
OC	Organochlorine (pesticides)
PAHs	Polycyclic Aromatic Hydrocarbons
PCB	polychlorinated biphenyl
PQLs	Practical Quantitation Limits
PSD	Particle size distribution
QAQC	Quality Assurance/Quality Control
RPD	Relative Percent Difference
RSD	Relative Standard Deviation
SAP	Sampling and Analysis Plan
SOP	sulphate of potash
SQG	Sediment Quality Guidelines
SRM	Standard Reference Material
ТВТ	Tributyltin
TPH	Total Petroleum Hydrocarbons
TRH	Total Recoverable Hydrocarbons
UCL95	Upper confidence limits of 95%
WA	Western Australia

Table of Contents

1.		Introduction		11
		Project Description Scope and Objectives		11 16
2.		Existing Environment		17
	2.1. 2.2.	Site Identification, History and Use Environmental Setting		17 17
3.		Methods		21
	3.3. 3.4.	Sampling design and rationale Sampling Methods Laboratory Testing Quality Control/Quality Assurance (QA/ Data analysis	'QC)	21 24 27 28 29
4.		Results and Discussion		33
	4.3. 4.4. 4.5. 4.6. 4.7.	Physical characteristics Metals and Metalloids		33 33 37 43 43 44 46 47
5.		QA/QA Results		48
		Field QA/QC Samples Laboratory QA/QC		48 53
6.		Conclusions		55
	6.2. 6.3. 6.4. 6.5.	Pesticides Nutrients PASS Screening		55 55 56 56 56 57 57
7.		References		59

Figures

Figure 1	Mardie Project Regional Location	14
Figure 2	Mardie Project Development Envelopes: Marine, Ponds and Terrestrial Infrastructure and Transhipment Corridor	15
Figure 3	Sediment sampling locations with both old and revised footprint of the capital dredging program.	23
Figure 4	Field sampling images presenting a) vibracoring using a 6 m, 76.2 mm diameter stainless steel tube hou the flexible shaft from a small concrete vibrator, and b) the deployment of the sediment grab using a pull- block hung over the side of the vessel	
Figure 5	Proportion of sediment in each size class at all sites and depth horizons analysed.	36
Figure 6	Linear regression showing the correlation between concentrations of Aluminium and a) Nickel b) Arsenic Cobalt, d) Vanadium and e) Magnesium	, c) 42

Tables

Table 1	Short Summary of the Proposal	11
Table 2	Location and proposed extent of physical and operational elements	13
Table 3	Sediment Quality Assessment Objectives from the Environmental Scoping Document – Mardie Project 2 16	2018
Table 4	Summary of recommended sediment quality guidelines for the Pilbara coastal waters	18
Table 5	Sediment sampling locations including coordinates, sampling design, method and field quality control	22
Table 6	Reaction observations to determine appropriate rating	30
Table 7	Observations of sediment samples recorded during the field survey	34
Table 8	Total organic carbon and moisture content for sediment samples	37
Table 9	Total metal concentrations (normalised concentrations) in marine sediments for all sites at Mardie, WA.	39
Table 10	Correlation coefficients between the normalisers aluminium concentration, iron concentration and <63µr particle size fraction.	n 41
Table 11	Normalised results for TPH and TRH analytes to 1% TOC. Yellow shaded areas present results above t LoR. 44	he
Table 12	Summary of all nutrient levels analysed at Mardie, WA.	45
Table 13	Summary of pH _F , pH _{FOX} and Reaction results at each of the sites sampled at Mardie, WA.	46
Table 14	Relative percent difference (RPD) or Relative Standard Deviation (RSD) values for the physical sedimer characteristics in the field quality control samples. Yellow shaded cells identify values above the specific RPD/RSD.	
Table 15	Relative percent difference (RPD) and Relative Standard Deviation (RSD) values for the total metal concentrations in the field quality control samples. Yellow shaded cells identify values above the specific RPD/RSDs.	ed 50
Table 16	Relative percent difference (RPD) and Relative Standard Deviation (RSD) calculations for QA/QC samp TPH/TRH analytes. Yellow shaded cells identify values above the specified RPD/RSDs.	les 52
Table 17	Relative percent difference (RPD) and Relative Standard Deviation (RSD) calculations for QA/QC samp nutrient analytes. Yellow shaded cells identify values above the specified RPD/RSDs.	les 53
Table 18	Recommended environmental quality criteria (EQC) for metals and organic nutrients in whole sediment Mardie Project area	at the 58

Appendices

Appendix A	Chain of Custody Forms	61
Appendix B	Laboratory Results	62
Appendix C	Laboratory QA/QC & Methods	63
Appendix D	Particle Size Distribution Results	64
Appendix E	Benthic Infauna Sampling	65

1. Introduction

1.1. Project Description

1.1.1. Short Summary of the Proposal

Table 1 Short Summary of the Proposal

Proposal Title	Mardie Project
Proponent Name	Mardie Minerals Pty Ltd
Short Description	Mardie Minerals Pty Ltd is seeking to develop a greenfields high quality salt and sulphate of potash (SOP) project and associated export facility at Mardie, approximately 80 km south west of Karratha, in the Pilbara region of WA. The proposal will utilise seawater to produce a high purity salt product, SOP and other products derived from sea water.
	The proposal includes the development of a seawater intake, concentrator and crystalliser ponds, processing facilities and stockpile areas, bitterns disposal pipeline and diffuser, trestle jetty export facility, transhipment channel, drainage channels, access / haul roads, desalination (reverse osmosis) plant, borrow pits, pipelines, and associated infrastructure (power supply, communications equipment, offices, workshops, accommodation village, laydown areas, sewage treatment plant, landfill facility, etc.).

1.1.2. Proposal Description

Mardie Minerals Pty Ltd (Mardie Minerals) seeks to develop the Mardie Project (the proposal), a greenfields high-quality salt and sulphate of potash project in the Pilbara region of Western Australia (Figure 1). Mardie Minerals is a wholly-owned subsidiary of BCI Minerals Limited.

The proposal is a solar salt project that utilises seawater and evaporation to produce raw salts as a feedstock for dedicated processing facilities that will produce a high purity salt, industrial grade fertiliser products, and other commercial by-products. Production rates of 4.0 Million tonnes per annum (Mtpa) of salt (NaCl), 100 kilo tonnes per annum (ktpa) of Sulphate of Potash (SoP), and up to 300 ktpa of other salt products are being targeted, sourced from a 150 Gigalitre per annum (GLpa) seawater intake. To meet this production, the following infrastructure will be developed:

- > Seawater intake, pump station and pipeline;
- > Concentrator ponds;
- > Drainage channels;
- > Crystalliser ponds;
- > Trestle jetty and transhipment berth/channel;
- > Bitterns disposal pipeline and diffuser;
- > Processing facilities and stockpiles;
- > Administration buildings;
- > Accommodation village,
- > Access / haul roads;

- > Desalination plant for freshwater production, with brine discharged to the evaporation ponds; and
- > Associated infrastructure such as power supply, communications, workshop, laydown, landfill facility, sewage treatment plant, etc.

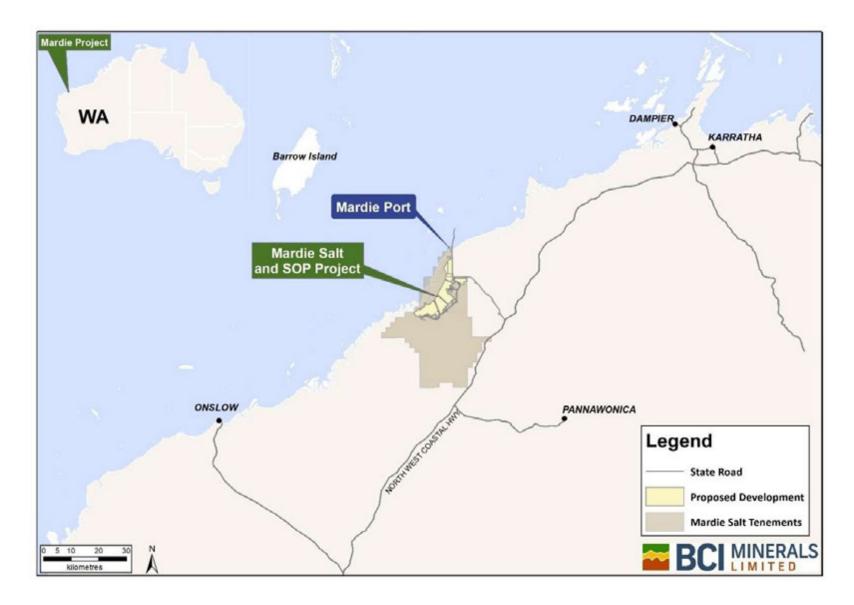
Seawater for the process will be pumped from a large tidal creek into the concentrator ponds. All pumps will be triple-screened and operated accordingly to minimise entrapment of marine fauna and any reductions in water levels in the tidal creek.

Concentrator and crystalliser ponds will be developed behind low permeability walls engineered from local clays and soils and rock armoured to protect against erosion. The height of the walls varies across the project and is matched to the flood risk for the area.

Potable water will be required for the production plants and the village. The water supply will be sourced from a desalination plant which will provide the water required to support the Project. The high salinity output from the plant will be directed to a concentrator pond with the corresponding salinity.

A trestle jetty will be constructed to convey salt (NaCl) from the salt production stockpile to the transhipment berth pocket. The jetty will traverse the intertidal zone for approximately 3.6 km before extending into the ocean for a further 3.4 km. The jetty will not impede coastal water or sediment movement, thus ensuring coastal processes are maintained.

Dredging of up to 500,000 m³ will be required to ensure sufficient depth for the transhipper berth pocket at the end of the trestle jetty, as well as along a 4 km long channel out to deeper water. The average depth of dredging is approximately 1 m below the current sea floor. The dredge spoil is inert and will be transported to shore for use within the development.


The production process will produce a high-salinity bittern that, prior to its discharge through a diffuser at the far end of the trestle jetty, will be diluted with seawater to bring its salinity closer to that of the receiving environment.

Access to the project from North West Coastal Highway will be based on an existing public road alignment that services the Mardie Station homestead and will require upgrading (i.e. widening and sealing).

The majority of the power required for the project (i.e. approximately 95%) is provided by the sun and the wind, which drives the evaporation and crystallisation processes. In addition, the Project will require diesel and gas to provide additional energy for infrastructure, support services and processing plant requirements.

The proposal will be developed within three separate development envelopes. The boundaries of these development envelopes are shown in Figure 2 and described in Table 2.

Figure 1 Mardie Project Regional Location

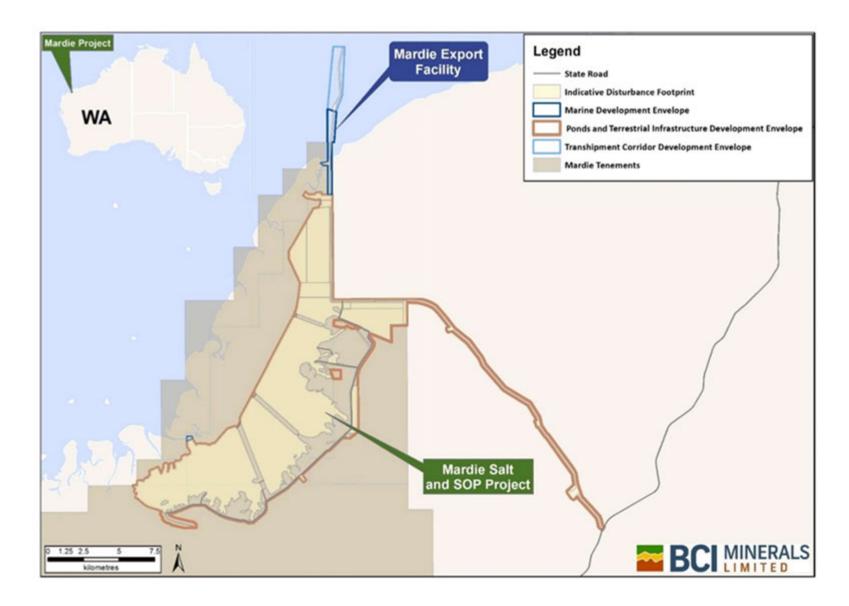


Figure 2 Mardie Project Development Envelopes: Marine, Ponds and Terrestrial Infrastructure and Transhipment Corridor

1.2. Scope and Objectives

The scope of this report is to address the relevant work requirements outlined by in the Mardie Project - Environmental Scoping Document (ESD) (Preston 2018). Table 3 outlines the specific requirements from the ESD that are required to be addressed in this Sediment Quality Assessment report.

The objectives of this report are to:

- > Describe the implementation of the sediment quality assessment;
- > Analyse the sediment results for a range of physical and chemical properties;
- Compare chemical concentrations against the ANZECC/ARMCANZ (2000) Interim Sediment Quality Guideline (ISQG) values; and
- > Inform dredge plume modelling and determine baseline sediment quality.

Table 3 Sediment Quality Assessment Objectives from the Environmental Scoping Document – Mardie Project 2018

ESD	Requirement		
ltem			
ltem 8	Develop a Dredging and Spoil Disposal Management Plan (DSDMP). The DSDMP will be prepared in accordance with 'Instructions on how to prepare Environmental Protection Act Part IV Environmental Management Plans' (EPA, 2018a) and Environmental Management Plan Guidelines (Cth DotE, 2014a, DoEE, 2018a). Consideration should also be given to the requirements of the Environment Protection (Sea dumping) Act 1981 and associated guidance. The plan will consider the results of dredge plume modelling, sediment quality investigation baseline water quality and BCH surveys to inform monitoring and management. The plan will include:		
	a. Presentation of model outputs and potential impacts in an impact zonation scheme including both Environmental Protection Outcomes (EPOs) and management targets;		
	 'Most likely best case' and 'most likely worst case' impacts and losses of BCH for each of the dredge timing scenarios (e.g. accounting for seasonal variation in BCH or current patterns); 		
	 Monitoring / management feedback loops and triggers to achieve the EPOs (focussing on the Zone of Moderate Impact / Zone of Influence Boundary) and management targets; 		
	 Selection of indicators for management triggers to be used to assess achievement of EPOs and management triggers based on pressure response pathways and proposed adaptive management actions; 		
	 Monitoring program including site locations and methods to provide data to allow assessment against the management triggers; 		
	f. Contingency management strategies to be employed if triggers are reached; and		
	g. Performance criteria and method for demonstrating during and immediately following dredging that the impact predictions have been achieved, focusing on the Zone of Moderate Impact / Zone of Influence Boundary.		
Item 30	Undertake a baseline sediment quality assessment at the outfall location including physical (i.e. particle size) and chemical (metals, tributyltin, hydrocarbons);		
Item 35	Collect adequate baseline water and sediment quality data to document background marine environmental quality (including spatial and temporal variation) within the receiving marine environment. Baseline data acquisition will be adequate for the derivation of environmental quality criteria for indicators relevant to the discharge(s) e.g. water, sediment and/or infauna quality indicators;		
Item 38	Undertake a study to identify any acid sulphate soils or sediment that could potentially be disturbed by the Proposal;		

2. Existing Environment

2.1. Site Identification, History and Use

The Mardie Project is located on the Mardie Coastline in the Pilbara between Dampier and Onslow. The majority of the Mardie Project area is located on Mardie Station. The area is isolated and undeveloped with the exception of a magnetite export facility located at Cape Preston, approximately 50 km north of the Mardie Project area.

Mardie Station is a 225,000 ha pastoral lease, sheep then cattle station which was established in 1866 near the mouth of Fortescue River. Mardie Station operates under a Vacant Crown Land reserve now held by Citic Pacific Mining.

2.2. Environmental Setting

The offshore components of the Mardie Project Development Envelope occur within shallow (<6 m) nearshore areas, north of the Robe River and southwest from the Fortescue River mouth. The seafloor in this area is generally comprised of unconsolidated silt, sand and gravel. Benthic habitat surveys have determined the presence of patches of coral and macroalgae, seagrass, sponges, and ascidians which may occur within, or immediately adjacent to, the Mardie Project Development Envelope (O2 Marine 2019a).

2.2.1. Previous Sediment Investigations

Sediment quality has not previously been assessed within or adjacent to the Project Area. Only one previous study in the Pilbara region is considered relevant to inform the identification of contaminants of potential concern.

Background Quality of Pilbara Coast Sediments (DEC 2006)

The Department of Environment and Conservation (DEC) undertook an investigation of marine sediments of the Pilbara coast in 2005 to estimate the background concentrations for selected contaminants (DEC 2006). Sediment samples collected from coastal waters at Port Hedland, Dampier Archipelago, Onslow, Ashburton River Mouth and Exmouth Gulf were analysed for TBT, PAHs, TPH, BTEXN, organochlorine pesticides and polychlorinated biphenyls (PCBs), and total metals and metalloids (Al, As, Cd, Cr, Co, Cu, Fe, Pb, Hg, Ni, Se, Ag, V and Zn) (DEC 2006). Background sediment quality was found to be high and concentrations of most metals and metalloids were found to be at similar levels or lower than found in other studies undertaken in northern Australia. However, total arsenic concentrations were found to be relatively high (median of 36 mg/kg for one site off Onslow) and exceeded the recommended sediment quality guideline at some of the essentially unimpacted locations sampled across the region. The elevations are considered to be natural and likely to be related to the geology of the region. The results of this study were used to develop a set of Interim Sediment Quality Guidelines (ISQGs) appropriate for four levels of ecological protection (LEPs) in the coastal marine environment of the Pilbara region shown in Table 4. The LEPs for the Mardie Project have been derived and are presented in the Environmental Quality Plan (O2 Marine 2019b).

Level of EcologicaL Protection	ISQG available	Natural background exceeds ISQG	No ISQG available
Maximum	 (All metals) Use estimated natural background; or Derive site specific SQG from 80th percentile of reference site*. (Organic chemicals) No detectable concentration using lowest LoR available. or use 80th percentile of reference site. 		 (All metals) Use estimated natural background; or Derive site specific SQG from 80th percentile of reference site*. (Organic chemicals) No detectable concentration using lowest LoR available or use 80th percentile of reference site.
High	(As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn) Use ISQG from ANZECC & ARMCANZ (2000) (Organic chemicals) Use ISQG from ANZECC & ARMCANZ (2000) unless below LoR then guideline should be no detectable concentration	(As) Use estimated natural background concentration; or Compare dilute acid extractable concentration with ISQG.	 (eg. Al, Co, Fe, Se, V) Use median of natural background concentration multiplied by factor of 2*. (Organic chemicals) No detectable concentration using lowest LoR available or median of natural background concentration multiplied by a factor of 2.
Moderate	(As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn) Use ISQG from ANZECC & ARMCANZ (2000) (Organic chemicals) Use ISQG from ANZECC & ARMCANZ (2000) unless below LoR then guideline should be no detectable concentration.	(As) Use estimated natural background concentration; or Compare dilute acid extractable concentration with ISQG	 (eg. Al, Co, Fe, Se, V) Use median of natural background concentration multiplied by factor of 2*. (Organic chemicals) No detectable concentration using lowest LoR available or median of natural background concentration multiplied by a factor of 2.
Low	(Bioaccumulators or biomagnifiers eg. Cd, Hg) Use ISQG from ANZECC & ARMCANZ (2000) unless below LoR then guideline should be no detectable concentration.		(Bioaccumulators or biomagnifiers eg. Se) Use natural background concentration multiplied by a factor of 3* unless below LoR then guideline should be no detectable concentration.

Table 4 Summary of recommended sediment quality guidelines for the Pilbara coastal waters

* Assessment could be done on total contaminant concentration or on potentially bioavailable concentration

2.2.2. Identifying Contaminants of Potential Concern

Historical anthropogenic contamination of sediments in the Mardie Project area is unlikely due to the lack of coastal development. The National Assessment Guidelines for Dredging (NAGD 2009) identifies the common metals and metalloids (e.g. Cu, Pb, Zn, Cr, Cd, Ni, Hg, As) are the most widespread pollutants in Australia, being present in most contaminated sediments, sometimes at high levels. Metal contaminant sources may also derive from bitterns discharge and coastal construction processes. Organotin compounds are also common contaminants in ports and harbours and are frequently present at high levels in berths and inner harbour areas. The nearest Port is Cape Preston Port located approximately 50 km to the northeast of the Project area. Whilst it is possible that TBT may have entered the environment at Cape Preston, contamination in the Project area is considered to be a low risk.

Petroleum hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) are also common but are normally found at elevated levels only in restricted locations and the potential for hydrocarbon spill is low if managed appropriately. However, it is noted that herbicide spraying is common in the adjacent Mardie catchment, with widespread spraying of Mesquite across Mardie Station. This spraying used a mixture of herbicide at a ratio of 1:50 with diesel. Therefore, diesel inputs to the catchment are possible, but are considered to represent a low risk.

A review of the potential contaminant sources of the North-West Shelf (NWS) was undertaken in Chevron (2010). Potential contaminants identified from marine based activities included organic and inorganic contaminants from the oil and gas industry, shipping activities, commercial and recreational fishing activities, aquaculture and tourism. Coastal issues such as domestic waste, e.g. sewage disposal, have been perceived as less significant in this region than elsewhere because of low population density. However, potential pollutants from diffuse sources in the region include metals and antifoulants from shipping, harbour works, shore-based plants and cross-shelf trunklines. A review of contaminant sources, impacts, pathways and effects on the NWS by Fandry et al. (2006) identified the following COPCs in the region, including:

- Metals: (Ba, Cd, Cr, Cu, Pb, Hg and Zn) associated with shipment of minerals and runoff from onshore mining activities;
- > TBT: antifoulant on ships
- > Nitrogen: Nutrients
- > Wastewater from industrial processing; and
- > Hydrocarbons associated with oil spills and chronic releases such as bilge and tank residues from ships.

Due to the undeveloped nature of the catchment and sparse farming practices it was considered that sources for PAHs and Organochlorine (OC) pesticides would be unlikely to make a substantial contribution to contaminant loads in offshore sediments (Fandry *et al.* 2006).

As identified above, Mesquite (a weed) is a wide-spread problem on Mardie Station with the single largest infestation of mesquite in Australia covering 2/3 of the 225,000 ha pastoral grazing lease. Strategic planning for containing and controlling mesquite on Mardie Station incorporates the use of chemicals to control further spreading. Phenoxyacetic Acid Herbicides have been extensively used as part of the plan which commenced in 2011. Herbicides used to treat Mesquite include Triclopyr +

picloram and Velpar (hexazinone). It is therefore possible that nearshore sediments could contain traces of these contaminants.

Based on literature review, there are very few known CoPC in the region and a few identified risks from proposed Mardie Project activities. Sampling and analysis is considered to be warranted for the following CoPC:

- Inorganic Compounds: Total metals and metalloids (Al, Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Sb, V and Zn);
- > Organic Compounds: TPH, BTEXN, PAH and TBT;
- > Phenoxyacetic Acid Herbicides (including triclopyr + picloram and velpar (hexazinone); and
- > Nutrients (TN, TKN, NH4, NO2+NO3, TP, FRP).

Given the proliferation of unconsolidated silt, sand and gravel in the Mardie Project Development Envelope, benthic infauna is also monitored as the key ecological element of the habitat. Benthic infauna provides fundamental data that are relevant to general objectives to sustained Sediment Quality as they are sedentary and respond to pollutant stresses.

In addition, although the coastline is not mapped as an Acid Sulfate Soils risk area, given the dredge material is to be disposed of onshore, investigation into the potential for acid sulfate soils are also investigated.

3. Methods

3.1. Sampling design and rationale

The Sediment Quality Assessment was initially based on the preliminary marine infrastructure design for the proposed Mardie Project provided by Mardie Minerals in accordance with the *National Assessment Guidelines for Dredging* (NAGD, 2009). A sediment Sampling and Analysis Plan (SAP) was developed with a sampling design reflecting recommendations provided in ANZECC/ARMCANZ (2000), NAGD (2009), DER (2014) and NEPM (2013). This included dividing the original dredge footprint into distinct areas and calculating the number of sampling locations required based on the gross volume of sediment expected to be dredged in accordance with NAGD (2009), despite intention to reuse the dredge material. Additional samples were also targeted adjacent to the proposed outfall to collect baseline information on sediment quality and benthic infauna for the proposed discharges.

Following implementation of the SAP the proposed marine infrastructure design was modified, therefore additional sampling was undertaken to ensure an adequate sediment quality representation of the revised area. However, the close proximity between the originally and revised dredging footprints (~500 m), as well as the results indicating an area of high environmental quality, suggest sediment quality across the two areas is likely to be homogenous and the complete set of samples collected during the two surveys was determined to be appropriate to characterise the sediment quality of the area.

The locations, coordinates, target analysis and collection methods for all samples are presented in Table 5 and shown in Figure 3. Sediment samples were collected from a total of 32 nearshore locations. The sediment samples were analysed for physical characteristics at all 32 locations, for contaminants at 28 locations, potential acid sulfate soils (PASS) at 24 locations and benthic infauna was sampled at seven (7) locations. Samples were collected using a Vibrocorer from eight (8) locations, a sediment grab from 21 locations and diver cores were collected at three (3) locations. Sampling for CoPC was focussed on the surface 1 m of sediment rather than the volume of underlying natural geological materials which are, except for the surface 1 m of sediment, expected to be uncontaminated.

Sediment sampling took place over three separate field campaigns in December 2018, January 2019 and March 2019. Samples were collected from within the original footprint during surveys undertaken in December 2018 and January 2019. The trestle jetty was then extended a further ~1 km offshore, with the proposed dredging program moved respectively further offshore. In order to improve sediment sampling coverage within the new proposed dredge footprint, six (6) additional sites were added to the sampling program (RF1, RF2, RF3, RF4, RF5 & RF6). The modification to the dredge footprint and the additional sites are shown in Table 5.

Table 5 Sediment sampling locations including coordinates, sampling design, method and field quality control

Sampling	Cool	rdinates	Target	Method ²	Field QC ³
Location	Latitude	Longitude	Analysis ¹		
C1	21°2' 54.835" S	115°56' 6.785" E	RC, Ph, Pa	G	
C2	21°2' 58.378" S	115°56' 5.091" E	RC, Ph, Pa	G	
C3-1 (0-0.5 m) C3-2 (0.5-1 m)	21°3' 3.083" S	115°56' 4.327" E	AC, Ph, Pa	VC	
C4	21°3' 4.003" S	115°56' 0.715" E	AC, Ph, Pa	G	
C5	21°3' 11.351" S	115°55' 59.055" E	RC, Ph, Pa	G	
C6	21°3' 13.633" S	115°55' 58.337" E	AC, Ph, Pa	G	DUP (P1): AC, Pa
C7	21°3' 15.534" S	115°55' 57.208" E	AC, Ph, Pa	VC	
C8	21°3' 21.168" S	115°55' 57.979" E	RC, Ph, Pa	VC	
C9-1 (0-0.5 m) C9-2 (0.5-1 m)	21°3' 29.897" S	115°55' 57.520" E	RC, Ph, Pa Ph, Pa	VC	
C10	21°3' 37.300" S	115°55' 57.101" E	RC, Ph, Pa	VC	
C11	21°3' 39.167" S	115°55' 57.646" E	AC, Ph, Pa	D	
01	21° 3' 53.039" S	115°55' 48.447" E	BI, RC, Ph	G	
02	21° 3' 52.036" S	115°55' 52.096" E	BI, RC, Ph	G	
O3	21° 3' 57.017" S	115°55' 55.206" E	BI, RC, Ph	G	TRIP (T4): Ph TRIP (T5): RC, Ph, Pa
OC1	21° 2' 13.280" S	115° 56' 15.964" E	RC, Ph	VC	
OC2	21° 2' 20.577" S	115° 56' 14.246" E	RC, Ph, Pa	D	
OC3	21° 2' 26.830" S	115° 56' 13.812" E	RC, Ph, Pa	D	REP (T1): AC, Ph, Pa
RF1	21° 2' 38.879" S	115° 56' 7.202" E	Ph	G	
RF2	21° 1' 53.309" S	115° 56' 21.187" E	AC, Ph, Pa	G	
RF3	21° 1' 37.101" S	115° 56' 20.028" E	AC, Ph, Pa	G	
RF4	21° 1' 8.418" S	115° 56' 20.467" E	Ph	G	
RF5	21° 0' 28.278" S	115° 56' 27.677" E	Ph	G	
RF6	21° 2' 32.421" S	115° 56' 11.620" E	Ph	G	DUP (RFB): Ph
TB1	21°3' 44.901" S	115°55' 58.487" E	AC, Ph, Pa	VC	TRIP (T2): AC TRIP (T3): AC
TB2	21°3' 45.411" S	115°55' 56.891" E	BI, AC, Ph, Pa	G	SPLIT (S1): AC, Pa
TB3	21°3' 45.664" S	115°56' 4.225" E	RC, Ph, Pa	G	
TB4	21°3' 49.148" S	115°56' 2.833" E	RC, Ph, Pa	VC	SPLIT (S2): Ph
TB5	21°3' 50.946" S	115°56' 1.608" E	RC, Ph, Pa	G	SPLIT (S3): RC, Pa
TB6	21°3' 52.703" S	115°56' 2.347" E	BI, AC, Ph, Pa	G	
TB7	21°3' 52.700" S	115°56' 0.554" E	RC, Ph, Pa	G	
TB8	21°3' 52.174" S	115°55' 58.441" E	BI, AC, Ph, Pa	G	
TB10	21°3' 50.474" S	115°55' 55.421" E	BI, AC, Ph, Pa	G	REP (T6): RC, Ph, Pa

¹ Definitions: BI= Benthic Infauna, AC= All Contaminants, RC= Restricted Contaminant Suite (no Organotins/ Pesticide), Ph= Physical Characteristics, Pa= Potential Acid Sulfate Soils Field Screening Test

² Definitions: VC= Vibro-Core, G= Grab, D=Diver Coring

³ Definitions: DUP= One sample split into 2 containers, TRIP= Three separate samples, REP=Two separate samples. SPLIT= One sample split into 2 containers, with one sample sent to secondary laboratory

Figure 3 Sediment sampling locations with both old and revised footprint of the capital dredging program.

3.2. Sampling Methods

3.2.1. Vibracoring

Vibracoring was performed at eight locations:

- > Two (2) locations within the original berth pocket/turning circle (TB1 &TB4);
- > Five (5) locations within the original channel (C3, C7, C8, C9 & C10); and
- One (1) location in the original outer channel which is directly adjacent to the revised channel (OC1).

Vibracoring was selected given this is the recommended technique for coarse or firm sediment in NAGD (2009).

A 76.2 mm diameter stainless steel tube of 6 m length was fastened to a custom-made bracket which uses the flexible shaft of a small concrete vibrator to penetrate the tube into unconsolidated sediment (Figure 4). The tube was suspended from a davit over the side of the vessel. Divers were deployed at the site to assist the positioning of the corer onto the seabed. Once in position, a signal was given to top-side, the vibro-corer was engaged and vibrated into unconsolidated sediment. A plastic liner was used inside the tube to collect the sample and a one-way core catcher was custom made for the tube to prevent losing the sample on recovery. Three-point anchoring was utilised during sampling.

The tube was recovered using the deck winch, the actual core depth was recorded and the core sample removed from the tube. The core sample was hung vertically to settle sediments prior to being laid out on the deck and a photographic and observation record taken before packing sediment into laboratory containers. Each sediment core was be divided into 0.5 m depth intervals and samples were collected at each interval. Refusal was encountered at less than 0.5 m depth below the seabed at all sites except for two locations (C9 & C3). Therefore, surface (0-0.5 m) sediment samples were collected at all eight locations and a deeper core sample (0.5-1 m) was collected from locations C9 and C3 only.

Replacement core liners were used for each core and core catchers were rinsed using appropriate decontamination solution (i.e. DECON) between samples.

Equipment required for the vibracore sampling included:

- > Vibracorer:
- > 5x Stainless pipes (76.2 mm);
- > Plastic liner;
- > 5x Stainless Core catchers;
- > 3x vessel anchors;
- > Deck winch;
- > Sample collection tray;
- > Laboratory supplied sample containers; and
- > Decon 90.

3.2.2. Sediment Grab

Surficial sediment samples were collected using a Petite Ponar sediment grab (152 x 152 mm) at 21 locations:

- Seven (7) locations within the original berth pocket/turning circle (TB2, TB3, TB5, TB6, TB7, TB8 & TB10);
- > Five (5) locations within the original channel (C1, C2, C4, C5 & C6);
- > Three (3) locations surrounding the outfall (O1, O2 & O3); and
- > Six (6) locations within the revised dredge footprint (RF1, RF2, RF3, RF4, RF5 & RF6).

The Petite Ponar is constructed of two 316 stainless steel buckets with a volume of 2.4 litres and samples an area of 152×152 mm. The grab is lightweight (6.8 kg) which enabled deployment by hand using a pulley block hung over the side of the vessel (Figure 4). The impact of the grab on the bottom surface triggers a release mechanism to shut the buckets together and collect the sample.

On return of the sample to the surface the water was carefully removed, a photographic and observation record of the sample was taken before packing sediment into laboratory containers.

The grab was rinsed using appropriate decontamination solution (i.e. DECON) between each sampling location.

Equipment required for the sediment grab sampling included:

- > Petite Ponar Grab;
- > Deck winch;
- > Sample collection tray;
- > Laboratory supplied sample containers; and
- > Decon 90.

3.2.3. Diver Cores

Australian Diver Accreditation Scheme (ADAS) certified commercial divers were deployed with push corers at three (3) locations:

- > One (1) location within the original channel (C11); and
- > Two (2) locations within the outer channel (OC2 & OC3).

Two replicate sediment cores were collected by divers with the surface 0.5 m of sediment from the two cores homogenised to ensure a suitable sample size for laboratory analysis. Refusal was encountered within 0.5 m depth below the seabed at all three locations. Sediment corers and caps were rinsed using appropriate decontamination solution (i.e. DECON) between samples.

Equipment required for the diver core sampling method included:

- > 4x Polycarbonate sediment corers with caps;
- > Core sample collection tray;
- > Laboratory supplied sample containers;
- > Decon 90; and
- > 95-100% Ethanol solution.



Figure 4 Field sampling images presenting a) vibracoring using a 6 m, 76.2 mm diameter stainless steel tube housing the flexible shaft from a small concrete vibrator, and b) the deployment of the sediment grab using a pulley block hung over the side of the vessel

3.2.4. Benthic Infauna Sampling

Sediment samples for benthic infauna analysis was collected at seven (7) locations using the sediment grab as described in Section 3.2.2. Three (3) individual sediment grabs were required to provide the volume and statistical replication required for adequate analysis of benthic infauna.

Once the sample was recovered and secured on deck, personnel released the sample into the collection tray. O2 Marine personnel then undertook the following sample process/collection steps:

- Sediment was sieved through a 500 µm sieve using either the saltwater deck wash to remove fine sediment; and
- > All material retained on the sieve, such as coarse sediment and benthic infauna, was carefully rinsed into two pre-labelled 2 kg zip-lock bags and preserved with 95-100% ethanol solution.

Samples were kept at 4°C immediately after collection in the field and during transport.

Equipment required for the benthic infauna sediment sampling included:

- > Petite Ponar Grab;
- > Deck winch;
- > Deck wash hose;
- > Sample collection tray;
- > Funnel (x2)

- > 500 µm sieve box;
- > 2 kg zip lock sample bags;
- > Washing bottles;
- > Decon 90; and
- > 95-100% Ethanol solution.

3.3. Laboratory Testing

3.3.1. Analytical Testing

The sediment samples were packed into suitable (laboratory supplied) jars and plastic bags and stored on ice during the field program and transferred to a freezer at the completion of each day. All samples were marked with a unique identifier with the date/time and sampler's name using a 'Wet Write' permanent marker. All samples were listed on an O2 Marine Chain of Custody (CoC) form and that form was included with the samples when transported to the NATA-accredited laboratory for analysis. Copies of the CoC are provided in Appendix A.

For the analysis of marine sediment, ALS laboratory was used as the primary laboratory and MPL laboratory was used as the secondary laboratory to assess the inter-laboratory variability of the analytical results.

The sediment samples were analysed for the following testing:

- > Physical Properties: Particle size analysis (PSA), Total organic carbon (TOC), Moisture content;
- Inorganic Compounds: Total metals and metalloids (Al, Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Sb, V and Zn);
- Organic Compounds: Total petroleum hydrocarbons (TPH), Benzene, toluene, ethylbenzene, xylene (BTEXN), Polynuclear aromatic hydrocarbons (PAHs), Organotins Monobutyltin (MBT), Dibutyltin (DBT) and Tributyltin (TBT);
- > Nutrients (TN, TKN, NH4, NO2+NO3, TP, FRP);
- > Pesticides: Phenoxyacetic Acid Herbicides; and
- > Acid sulfate soils: Field screening analysis.

3.3.2. Benthic Infauna

Benthic infauna analysis was undertaken by Carijoa in Perth, Western Australia. On arrival, samples were unpacked and checked for integrity upon delivery. Picking of specimens from petri dishes was conducted under a dissecting microscope with all benthic fauna being separated from the sediment and counted. Identification of benthic fauna was to the lowest taxonomic level possible dependent on the quality of the preservation of individual animals. A reference collection was preserved and stored at Carijoa.

3.4. Quality Control/Quality Assurance (QA/QC)

3.4.1. Field QA/QC

The following QA/QC procedures were undertaken during field work in accordance with NEPM (1999), ANZECC/ARMCANZ (2000) and NAGD (2009) guidelines, including:

- Using suitably qualified environmental staff experienced in sediment sampling, field supervision and sediment logging;
- Samples were handled using gloved hands (powderless latex or nitrile gloves). New gloves were used for each sample to avoid potential cross-contamination;
- > All sampling equipment, including mixing bowls etc. being decontaminated between sampling locations via a decontamination procedure involving a wash with ambient seawater and a laboratory grade detergent, and successive rinsing with fresh water; or by a similarly acceptable method;
- Logs were completed for each sample collected including time, location, initials of sampler, duplicate type, chemical analyses to be performed and site observations;
- > Chain-of-custody (CoC) forms identifying (for each sample) the sampler, nature of the sample, collection date and time, analyses to be performed, sample preservation method and departure time from the site;
- > The survey vessel that was thoroughly inspected and washed down prior to each survey;
- Samples were contained in appropriately cleaned, pre-treated and labelled sample containers;
- Samples were kept cool (4°C) after sampling and during transport, stored in eskies with pre-frozen ice bricks;
- > Transportation of samples under CoC documentation (Appendix A); and
- > Additional QC field samples collected in accordance with the NAGD (2009).

3.4.2. Field Quality Control Samples

Field quality control samples included the following sampling design in accordance with NAGD (2009) and NEPM (2013, 2013a):

- > One (1) trip blank filled with inert chromographic sand;
- > Two (2) field blanks filled with inert chromographic sand;
- > Two (2) rinsate blanks filled with deionised water;
- > Three (3) field triplicates (that is, three separate samples taken at the same location) to determine the variability of the physical and chemical characteristics;
- > Two (2) field Replicates (that is, two separate samples taken at the same location) to determine the variability of the physical and chemical characteristics;
- One (1) field Duplicate (that is, samples thoroughly mixed then split into two sub-samples) to determine the variability of the physical and chemical characteristics;
- > Three (3) field splits (that is, samples thoroughly mixed then split into two sub-samples with one of the samples sent to a secondary laboratory) to assess laboratory variation; and
- > Field Triplicates are collected for all benthic infauna samples to account for typically high within site variability in addition to comparison between sites.

3.4.3. Laboratory QA/QC

A summary of the field QA/QC samples collected and the site location is provided in Table 5.

Both analytical laboratories are NATA-accredited to conduct the required testing and have comprehensive best practice QA/QC programs designed to provide highly defensible analytical data in accordance with NEPM (1999), ANZECC/ARMCANZ (2000) and (NAGD 2009) guidelines. Laboratory QA/QC includes Laboratory Control Samples (LCS), Method Blanks (MB), Matrix Spikes (MS), Laboratory Duplicates (Dups) and Surrogates (where applicable), at frequencies at or above the NEPM guidelines – revised 2013.

3.5. Data analysis

3.5.1. Comparison of Data to Screening Levels

The results are compared to the ISQG-Low, which were developed as part of the ANZECC/ARMCANZ Guidelines for Fresh and Marine Water Quality (ANZECC/ARMCANZ 2000). Revised sediment quality guidelines (SQGs) were applied where appropriate as detailed in Simpson et al. (2013). The recommended sediment quality guidelines (SQGs) for the Pilbara coastal waters were also applied for parameters in which no ISQG-low values are available. Estimated natural background data for Manganese is not available in DEC (2006) and therefore a low reliability guideline value from The Ontario Ministry of the Environment (Persaud et al. 1990) presented in ANZECC/ARMCANZ (2000b) has been applied. The 80th percentile has also been provided for deriving site specific SQG from the baseline data.

Based on NAGD (2009), a screening level is exceeded if the upper 95% upper confidence limit of the mean (95% UCL) for a contaminant exceeds the ISQG-Low. The USEPA's ProUCL software is used to calculate and recommend the most appropriate 95% UCL test to apply based on the data size, data distribution and skewness. If the 95% UCL does not exceed the screening level, this means there is a 95% probability that the mean concentration of that contaminant within the material to be dredged will not exceed the screening level. If the 95 UCL of a contaminant exceeds the specified screening level, it is a Contaminant of Potential Concern (COPC) and evaluation should proceed through the decision-tree described in NAGD (2009).

The capital dredge material will be disposed to land, therefore characterisation of the material and assessment of its compatibility with the receiving environment and associated land uses on a site-specific basis is required in accordance with guidance provided in Schedule B2 of the NEPM (1999). These guidelines consist of Ecological Health Investigation Levels (EILs) and Screening Levels (ESLs), as well as Health Investigation Levels (HILs) and Screening Levels (ESLs). Health Investigation Level D for industrial areas was applied, as this material would be disposed to a potential future proposed Industrial Area. Whilst NEPM (1999) recommends these values should not be directly applied to the contamination of sediments, these values are recognised for the fact that these concentrations will be required to be met once the material is placed on land and has dried.

Normalising to a reference element was undertaken to enable a better determination of ambient baseline level. Organic chemicals are known to have a strong affinity to organic matter and hence normalisation to 1% total organic carbon content is recommended for comparing to the sediment quality guidelines (ANZECC & ARMCANZ, 2000). Metals tend to have a high affinity for the very fine particulate fraction of sediments. The <63 μ m fraction is the most widely accepted measure used for

normalizing metal concentrations to particle size. Normalization to geochemical normalisers such as Aluminium or Iron concentrations (which represent proxies for clay mineral content) are also accepted practices (ANZECC & ARMCANZ, 2000; Kersten and Smedes, 2002).

3.5.2. PASS Field Screening Test

The results of field screening tests are presented in a table to present the results of the three (3) combining factors considered in arriving at a 'positive field sulphide identification':

- > A reaction with hydrogen peroxide as classified in the reaction is rated in accordance with Table 6.
- > The actual value of pH_{FOX}: A pH_{FOX} <3, and a significant reaction occurred, then it strongly indicates PASS.</p>
- > A much lower pH_{FOX} than field pH_F . The lower the final pH_{FOX} value and the greater the difference between the pH_{FOX} compared to the pH_F , the more indicative of the presence of PASS.

Table 6 Reaction observations to determine appropriate rating

Reaction Rating	Key	Observations
Slight	1	Little to no reaction, languid bubble formation
Moderate	2	Languid bubble formation two or more layers
Strong	3	Active bubble formation inside test tube, mild effervescence
Extreme	4	Foaming or overflow/eruption, moderate to strong effervescence, sulfuric odour

3.5.3. Benthic Infauna

P.A.S.T v3.22 (Hammer et al. 2001) was used to calculate diversity indices in order to provide greater insight into community composition and included:

- > Margalef's richness index (d): a richness index that calculates richness based on the total number of individuals in a sample
- > Shannon's index (H): a diversity index that accounts for abundance and evenness
- Shannon's Evenness index (EH): an evenness index that calculates how evenly individuals are spread among species. Evenness is scaled on a value between 0 and 1 (1 = complete evenness).
- Dominance (D, 1-Simpson Index): assesses taxon dominance within a sample and ranges between 0 (all taxa are equally present) to 1 (one taxon dominates the community completely)

Raw abundance data was standardised to remove sampling bias due to variation of sample size within and between samples (sites). Standardised data was subsequently square root transformed to even out the contribution of common vs rarer taxa where higher abundance of some taxa could overshadow the contribution of less common taxa. Community similarity analyses were carried out with Primer v6 software (Clarke & Gorley, 2006).

Cluster and Principle Coordinates analysis (PCO) was run on Bray Curtis similarity matrix and was performed to obtain an ordination of sites based on relative similarity in composition and abundance

of the shared taxa. Canonical Analysis of Principle Coordinates (CAP) was then used to provide a constrained ordination of sites and to correlate the variables (taxa) with patterns on the CAP plot (Anderson and Willis, 2003, Anderson, 2003). This was done using vector overlays that show the strength and direction of the Spearman correlation of taxa relative to the axis of the plotted ordination and the pattern of the sites plotted according to their similarity to each other. This provides a strong indication of which taxa are contributing most to the plotted distribution and grouping of the sites.

At a coarser level, a one-way Analysis of Similarity (ANOSIM) was used to determine if there was a difference in community composition between the area allocated for the Turning Basin (TB2, TB6, TB8, TB10) and the area surrounding the outfall (O1, O2, O3). ANOSIM produces an R-value with a range from 0 (no difference in composition) – 1 (compositions are completely different). A Similarity Percentage (SIMPER) routine was used to determine which taxa are contributing to the similarity/dissimilarity between the two locations.

Classifying taxa according to feeding guilds can be useful for assessing impacts at the ecosystem level. The feeding guilds used to characterise the taxa from each sample are defined by MacDonald et al. (2010) and included:

- > Food source
 - Epibenthic = above sediment or from water column
 - Surface = surface of sediment
 - Subsurface = below sediment surface
- > Diet
 - Carnivorous = animal matter
 - Herbivorous = plant matter
 - Omnivorous = animal and plant matter
 - Feeding mode
 - Deposit feeder = ingests sediment
 - Detritus feeder = ingests particular matter only, without sediment
 - Suspension/filter feeder = strains particles from the water
 - Predator = eats live animals only
 - Scavenger = carrion only
 - Grazer = feeds by scraping, either on algae or sessile animals
 - Browsing = feeds by tearing or gathering particular items

Feeding guilds were overlaid on nMDS plots to assess whether guilds could be contributing to any differences between sites.

The most common foraminifera found in the benthic samples were counted to provide a qualitative representation only of their commonality and relative abundance.

3.5.4. QA/QC Assessment

The precision of the sediment analyses was determined by quantifying the differences between the concentrations of analytes in the QA/QC samples, using the method outlined in NAGD (2009).

The relative percent difference (RPD) was calculated for analyte concentrations in the sample splits (both inter-laboratory and intra-laboratory splits) and field replicates.

The RPD is calculated as follows:

$$\mathsf{RPD}(\%) = \frac{(difference \ between \ sample \ splits) \ X \ 100}{(average \ of \ sample \ split \)}$$

The RPD of sample splits should be less than $\pm 35\%$ for field splits and $\pm 50\%$ for field replicates, although the guidelines note that this may not always be the case where the sediments are very heterogeneous or greatly differing in grain size (NAGD 2009). Where three (3) or more samples were collected from the one location the relative standard deviation (RSD) was calculated for analyte concentrations in the sample splits. If the RPD for a measured analyte fell outside of these limits, the value of the measured analyte was flagged as an estimate rather than a precise value (NAGD 2009).

The RSD is calculated as follows:

(standard deviation of samples) (average of samples)

For benthic infauna, picking quality assurance was completed on 2 samples (10% of the total samples) with a 5% permissible error. Previous samples are checked if the error was greater than 5% and repeated until a rate of less than 5% was achieved.

4. **Results and Discussion**

4.1. Observations

Field observations recorded for each sample are presented in Table 7. Field observations of the sediment characteristics varied from fine mud, to silt, silt/sand, sand, coarse sand, sand/gravel and gravel (Table 7). Colour varied from brown/grey, grey/red/, dark grey, red/brown, dark brown to brown. There was no foreign material recorded in any samples representing an area of very little disturbance. A slight sulphur smell was detected in only one sample and organic elements in samples predominantly recorded from the outer channel of the original dredge footprint and revised dredge footprint typically consisted of shell grit.

Of the nine (9) sites where vibracoring was conducted, only two cores (C3 & C9) penetrated to 1 m. At each of these sites, two depth strata were collected (0 - 0.5 m & 0.5 - 1 m). Only the 0 - 0.5 m sediment depth strata was collected at all other sites due to core refusal.

4.2. Physical characteristics

4.2.1. Particle size distribution (PSD)

The PSD results are presented in Figure 5. The raw laboratory PSD results are included in Appendix D.

Sand and gravel size fractions dominate the PSD results from locations within the channel (C1-1 to C8) and the outer channel (OC1-OC3) of the original dredge footprint, and within the revised dredge footprint sample area (RF1-RF6). Sites closer to shore within the turning basin (TB1-TB10), around the outfall (O1-O3) and the inner channel (C9-C11) of the original footprint were comprised of a higher proportion of fines (i.e. silt and clay).

Sites C1-C8 in the channel of the original dredge footprint are comprised of approximately 55% and 40% of sand and gravel respectively, with a smaller proportion (<10%) of silt and clay. There is a substantial shift in PSD between sites C6 and C10 where fines comprise <3% to more than 50% of the sample, combined with equivalent reductions in the composition of gravel. This identifies the area of transition from the intertidal mudflats to marine deposits. The outer channel samples from the original footprint and revised footprint were composed of approximately 60% sands, 20% gravel and 20% fines.

The fines content in turning basin and inner channel (C9-C11) samples closer to shore in the original dredge footprint are approximately 50%, combined with ~40% sands and <10% gravel. The outfall sample sites from the original dredge footprint were variable. Sites O1-O2 comprised a similar PSD to the nearshore sites in the turning basin and inner channel, whilst replicates collected at site O3 in the shallowest location contained a smaller proportion of fines (<20%) and higher proportion of sand fractions (68%-85%).

	Sample details				Observations				
Site	Date	Time	Water Depth (m)	Sediment type	Colour	Foreign material	Shell/ Biota	Odour	Comments
C1	12/12/2018	0800	1.0	gravel	brown/grey		yes	nil	
C2	12/12/2018	0900	1.0						
C3-1	12/12/2018	1000	1.0	Gravel	grey/red		high	nil	Refusal 1.5 m
C3-2	12/12/2018	1000	1.0	Gravel/Shell	grey/red		high	nil	2 depth samples: 0-0.5 m, 0.5-1 m
C4	12/12/2018	1000	1.8	Silt					
C5	12/12/2018	1100	2.0	Gravel/silt					
C6	12/12/2018	1120	3.0						QC DUP P1
C7	15/01/2018	1330		sand/silt	grey/brown		high	nil	Refusal 0.5 m. Large shells
C8	15/01/2018	1230	2.8	sand	grey/brown				Refusal 1.0 m
C9-1 C9-2	15/01/2018 15/01/2018	1115 1115	2.3 2.3	Sand/silt Sand/gravel	dark grey grey		10%	nil	Refusal 1.3m 2 depth samples: 0-0.5 m, 0.5-1 m
C10	12/12/2018	0800	1.0	sand	0,				Refusal 0.8 m.
C11	16/01/2019			sand/silt					
OC1	16/01/2019	0800	3.4	sand/silt	red/brown		10%	Slight sulphur	Refusal 0.5 m
OC2	15/12/2018	1000	4.0						Dive Cores
OC3	15/12/2018	0930	3.5						Dive Cores
01	15/01/2019	0730	2.0						ref in gravel photo taken
02	16/01/2019	0930	1.6	silt					
O3	16/01/2019	0900	1.7	sand					
TB1	15/01/2019	1020							Refusal in gravel
TB2	12/12/2018	1150	3.6	silt					
TB3	12/12/2018	1230							
TB4	15/01/2019	0900	1.9	silt					refusal

	Sample details			Observations					
Site	Date	Time	Water Depth (m)	Sediment type	Colour	Foreign material	Shell/ Biota	Odour	Comments
TB5	16/01/2019	0900	1.8	silt/sand					
TB6	16/01/2019	0945	1.7						
TB7	16/01/2019	1025	2.0						
TB8	16/01/2019	1045	1.8						
TB9	15/01/2019	0800	2.4	silt					refusal
TB10	16/01/2019	1100	2.2						
RF1	1/03/2019	0700		fine mud	dark brown		yes	nil	muddy low shell grit
RF2	1/03/2019	0800		fine mud	dark brown		yes	nil	muddy low shell grit
RF3	1/03/2019	0900		fine mud	dark brown		yes	nil	muddy low shell grit
RF4	1/03/2019	1000		fine mud	dark brown		yes	nil	muddy low shell grit
RF5	1/03/2019	0830		coarse sand	brown		yes	nil	coarse sand high shell grit
RF6	3/03/2019	0930		fine mud	dark brown		yes	nil	muddy low shell grit

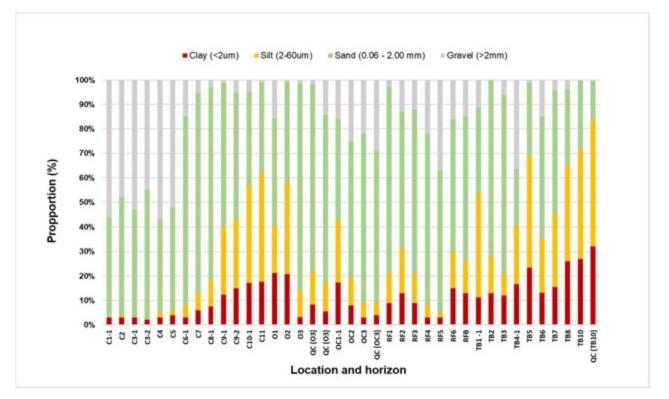


Figure 5 Proportion of sediment in each size class at all sites and depth horizons analysed.

4.2.2. Total Organic Carbon and Moisture Content

The TOC and moisture content of sediment samples are presented in Table 8 and raw laboratory results are provided in Appendix B. The relationship between sediment moisture and organic carbon can be used as a simple means to estimate the organic content and bulk density of flooded mineral soils by a simple determination of a sediment water content.

Sediment samples are composed of relatively low percentages of TOC (0.08–0.42%) and moisture content ranged between 13.8% and 50.3%. Higher proportions of TOC and moisture are typically recorded nearshore within samples from the turning basin of the original dredge footprint and further offshore in the outer channel from the original footprint and the revised dredge footprint sample area. Lowest TOC and moisture concentrations are recorded within the channel of the original dredge footprint.

Table 8 Total organic carbon and moisture content for sediment samples

Location	Total Organic Carbon (%)	Moisture Content (%)
C1_1	0.09	14.2
C2	0.08	18.8
C3_1	0.12	17.6
C3_2		13.8
C4	0.15	22.4
C5	0.19	26.5
C6_1	0.2	32.4
C7	0.08	27.2
C8-1	0.1	28.5
C9-1	0.18	30.5
C9-2		23.9
C10-1	0.11	29.5
C11	0.22	35.2
01	0.12	21.1
02	0.16	36.3
O3	0.16	28.8
OC1-1	0.15	25.8
OC2	0.21	34.9
OC3	0.24	33.3
RF2	0.27	32
RF3	0.23	25.2
TB1-1	0.22	33.3
TB2	0.34	50.3
TB3	0.42	40.4
TB4-1	0.15	30.4
TB5	0.28	37.1
TB6	0.15	23.5
TB7	0.21	35.4
TB8	0.22	35.3
TB10	0.26	35.4

4.3. Metals and Metalloids

Twenty-eight (28) samples were analysed for total metals and concentrations were typically below ISQG-low guideline values. Estimated background median concentrations multiplied by a factor of two (2) was applied as the SQG where no ISQG are available as recommended in DEC (2006). The levels of metals and metalloids for the sampling conducted for the Mardie Project are shown in Table 9.

Shaded yellow cells in Table 9 indicate concentrations above the ISQG-low value and bold font identifies concentrations above the low reliability guideline values. The 95% UCLs were calculated from the mean across all 28 sites. The 95% UCL was above the ISQG-low value for Arsenic and Nickel. In addition, the 95% UCL is above the SQG for Aluminium, Cobalt and Iron. and Vanadium

is above the background SQG. Three samples exceed the low reliability guideline value for Manganese. All concentrations for all metals are below EIL and HIL screening levels. The standard deviation of the sample data is less than 50% of the relevant HILs across all metals and no single value exceeds 250% of the relevant HILs.

The ISQG-low for Arsenic of 20 mg/kg was exceeded at thirteen (13) sites, predominantly within samples further offshore in the channel of the original dredge footprint and revised dredge footprint. The 95% UCL for Arsenic (As) over all locations was 26.53 mg/kg. Elevated levels of Arsenic in Pilbara sediments were also recorded in DEC (2006), with highest estimated background concentrations of 34 mg/kg recorded near Onslow. DEC (2006) concluded that the ISQG-low value for arsenic may not be suitable for use across much of the marine environment of the Pilbara region and that alternative guidelines based on local data should be derived.

The Nickel ISQG-low value of 21 mg/kg was exceeded at nine (9) sites. The 95% UCL of the mean for Nickel across all sites also slightly exceeded the ISQG-low value at 21.1 mg/kg. Elevated Nickel concentrations have previously been recorded in sediments during historical sampling conducted in nearshore waters close to the Ashburton River for the Wheatstone Project (O2 Marine 2017) and has regularly been recorded above the ISQG-low value in Dampier (O2 Marine 2019c).

Aluminium, Iron and Vanadium are common naturally occurring metals in sediments which were found at concentrations higher than recommended sediment quality guidelines for the Pilbara coastal waters (DEC 2006). Results recorded for Aluminium, Iron and Vanadium were more than twice the median concentrations for sediments in the Pilbara at all locations except for two Aluminium and three Vanadium locations. It is noted however, results recorded at the Ashburton Rivermouth and Onslow were significantly higher than other areas of the Pilbara sampled in DEC (2006) and are comparable to the results in this study. Therefore, median concentrations from these areas, or site-specific derived percentile values, are likely to be more appropriate to develop relevant sediment quality guidelines (SQGs) for future comparison.

Fourteen locations and the calculated 95% UCL Cobalt concentrations are slightly above recommended sediment quality guidelines for Pilbara coastal waters (DEC 2006). Three (3) locations have Manganese concentrations above the Ontario Ministry of the Environment, although the 95% UCL remains below the low reliability guideline value.

 Table 9
 Total metal concentrations (normalised concentrations) in marine sediments for all sites at Mardie, WA.

Analyte	Aluminium	Antimony	Arsenic	Cadmium	Chromium	Cobalt	Copper	Iron	Manganese	Mercury	Nickel	Silver	Vanadium	Zinc
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
LoR	50	0.5	1	0.1	1	0.5	1	1	10	0.01	1	0.1	2	1
ISQG-low	6300 ¹	2	20	1.5	80	10 ¹	65	16200 ¹	460 ²	0.15	21	1.0	44 ¹	200
EILs			80			(III) 540	340				680			17000
HILs			3000	800	4000	(VI) 3000	250000		40000	4000	4000			400000
C1-1	7030	<0.50	35.8	0.2	29.5	8.7 (10.8)	8.3	33600	449	<0.01	14.1 (18.1)	<0.1	52.4 (65.2)	17.9
C2	9940	<0.50	30.6	0.1	45.3	10.2 (9.4)	10.6	39800	445	<0.01	<mark>22.3</mark> (19.6)	<0.1	58.4 (54.2)	22.6
C3-1	6410	<0.50	53.8	0.3	24.8	8.1 (11.0)	7.5	36000	583	<0.01	12 (15.9)	<0.1	52.5 (78.1)	13.9
C4	5690	<0.50	41.9	0.3	22.2	7.1 (10.1)	6.9	30500	661	<0.01	10 (10.0)	<0.1	43.3 (66.3)	12.6
C5	6090	<0.50	48.6	0.2	23.4	7.2 (9.0)	7.4	34000	443	<0.01	11.6 (16.3)	<0.1	46.5 (67.5)	13.6
C6-1	5150	<0.50	31.4	0.1	21.1	6.6 (6.6)	6	27000	373	<0.01	10 (10.0)	<0.1	39.4 (39.4)	12.5
C7	6980	<0.50	29	<0.1	32	10.2 (13.9)	8	33400	314	<0.01	16.3 <mark>(22.8)</mark>	<0.1	54.7 (70.5)	20.2
C8-1	9120	<0.50	24.1	<0.1	44.3	13 (12.6)	11.4	42600	264	<0.01	22.3 (21.5)	<0.1	65.3 (63.7)	26.9
C9-1	9330	<0.50	18.2	<0.1	39	10.8 (10.3)	11.4	36600	266	<0.01	18.7 (17.8)	<0.1	51 (49.7)	23.6
C10-1	8960	<0.50	16.3	<0.1	36.1	9.3 (9.2)	11	33100	242	<0.01	17.1 (16.9)	<0.1	46 (45.9)	21.8
C11	8330	<0.50	17	<0.1	36.3	10.3 (10.9)	10.7	33800	270	<0.01	17.6 (18.9)	<0.1	47.6 (49.0)	22.4
01	14800	<0.50	10.4	<0.1	56.8	12.2 (8.8)	22.4	54900	218	<0.01	<mark>31</mark> (18.1)	<0.1	81.6 (55.7)	36.6
02	10,700	<0.50	17.8	<0.1	44.3	11.6 (10.0)	13.5	41,700	284	<0.01	<mark>21.8</mark> (17.9)	<0.1	59.8 (53.1)	27.8
O3	6610	<0.50	22.7	<0.1	28.3	8.9 (12.5)	8.1	29400	294	<0.01	14.8 <mark>(22.2)</mark>	<0.1	48.2 (61.9)	18.4
OC1-1	17200	<0.50	14.2	<0.1	62.9	19.2 (10.5)	32.1	58400	368	<0.01	<mark>33.8</mark> (17.4)	<0.1	79.3 (51.7)	38.8
OC2	7530	<0.50	17.3	0.2	31.4	9.6 (11.3)	9.5	37600	276	<0.01	15.2 (18.1)	<0.1	46.8 (51.0)	19
OC3	8750	<0.50	20.9	<0.1	36.5	9.3 (9.4)	10.6	37100	316	<0.01	17.1 (17.3)	<0.1	49 (49.3)	20.5
RF2	7840	<0.50	23.8	0.1	31.2	8.3 (9.0)	8.2	36000	291	<0.01	14.1 (15.7)	<0.1	44.7 (46.7)	16.7
RF3	7230	<0.50	26.2	0.1	30.1	8.2 (9.5)	7.5	34900	281	<0.01	13.2 (15.7)	<0.1	44.0 (47.6)	15.6
TB1-1	13200	<0.50	16.6	<0.1	50.5	12.2 (9.2)	19.1	48200	299	<0.01	<mark>24.5</mark> (16.7)	<0.1	67.9 (52.6)	31.4
TB2	11600	<0.50	21	<0.1	44.7	12 (9.7)	13.5	44700	478	<0.01	<mark>22.4</mark> (17.2)	0.1	59.8 (51.2)	29

18WAU-0002 / R190033 Mardie Project: Sediment Quality Assessment Report

Analyte	ε	>		-	۶				e				c	
	Aluminium	Antimony	Arsenic	Cadmium	Chromium	Cobalt	Copper	lron	Manganese	Mercury	Nickel	Silver	Vanadium	Zinc
	Alum	Anti	Ars	Cad	Chro	ပိ	Co	-	Manç	Mei	Ż	Si	Vana	N
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
LoR	50	0.5	1	0.1	1	0.5	1	1	10	0.01	1	0.1	2	1
ISQG-low	6300 ¹	2	20	1.5	80	10 ¹	65	16200 ¹	460 ²	0.15	21	1.0	44 ¹	200
EILs			80			(III) 540	340				680			17000
HILs			3000	800	4000	(VI) 3000	250000		40000	4000	4000			400000
TB3	8240	<0.50	14.7	<0.1	31.9	8.6 (9.0)	9.8	33100	224	<0.01	16.1 (17.4)	<0.1	42.7 (43.4)	20.9
TB4-1	17800	<0.50	11	<0.1	68.7	13.8 (8.7)	41.1	65800	227	<0.01	<mark>35.5</mark> (17.5)	<0.1	95.1 (55.8)	44.9
TB5	10400	<0.50	17.2	<0.1	42.9	10.6 (9.4)	13.6	38,900	266	<0.01	20.7 (17.6)	<0.1	56.6 (51.6)	26.4
TB6	9350	<0.50	16.8	<0.1	39.8	10.3 (9.9)	11.6	38300	252	<0.01	19.5 (18.4)	<0.1	56.1 (54.2)	24.8
TB7	9520	<0.50	17	<0.1	40.3	10.5 (9.9)	12.5	38200	264	<0.01	20 (18.5)	<0.1	54.7 (70.5)	24.6
TB8	10500	<0.50	17.4	<0.1	43.4	11.2 (9.8)	13.5	41900	277	<0.01	<mark>21.8</mark> (18.2)	<0.1	59.7 (53.5)	26.8
TB10	8790	<0.50	15.6	<0.1	37.8	10 (10.1)	11.8	35200	258	<0.01	18.2 (18.4)	<0.1	50.4 (50.7)	23.6
Mean	9396.1	<0.5	23.1	0.1	38.4	10.3 (10.1)	12.8	39096.4	328.0	<0.01	19.0 (17.8)	0.1	55.5 (55.3)	23.4
80 th %ile	10620	<0.5	30	0.1	44.5	11.8 (10.9)	13.5	42320	415	<0.01	<mark>22.3</mark> (18.5)	0.1	59.8 (63.3)	27.4
95% UCL	10392.9	<0.5	26.5	0.1	42.1	11.1 (10.6)	15.2	41844.2	362.7	<0.01	<mark>21.1</mark> (18.6)	0.1	59.5 (58.0)	25.8

¹ No ISQG available, used median concentrations in Pilbara sediments from DEC (2006) as background concentration multiplied by a factor of 2

² Low reliability guideline value from The Ontario Ministry of the Environment (Persaud et al. 1990) from ANZECC/ARMCANZ (2000)

4.3.1. Normalisation of Trace Metals

The correlation coefficient results of the normalisation tests for the <63 μ m particle size distribution (PSD), Aluminium concentration and Iron concentration are presented in Table 10. A strong positive correlation was calculated between Aluminium and Iron, although weak correlations were recorded for comparison with the <63 μ m PSD. This is contradictory to findings from other studies in the region where grain size was determined to be the principle factor which controls concentrations of most trace metals in whole sediments (O2 Marine 2018). However, the PSD results collected from the Development Envelope were highly variable (see Section 4.2.1).

The data for metal contaminants that recorded elevated concentrations (Arsenic, Nickel, Vanadium, Cobalt and Manganese) were graphed against the Aluminium and Iron concentration normalisers to investigate which would give the best correlation for the trace metals. Concentrations of Aluminium and Iron correlated well with most trace metals, with Aluminium providing slightly better correlations overall. Linear regression results with trace metals and Aluminium are presented in Figure 6 showing a strong positive correlation with Nickel (R^2 =0.96), Cobalt, (R^2 =0.77) and Vanadium (R^2 =0.84), suggesting that these metals are lithogenically derived and of natural origin. Comparably, a weak linear correlation exists between Arsenic (R^2 = 0.4) and Manganese (R^2 =0.1) and therefore normalisation was not undertaken on these metals. Findings that Arsenic did not correlate with any of the normalisers is consistent with previous sediment quality studies in the Pilbara region (DEC 2006, Chevron 2010, O2 Marine 2017).

The normalised results for Nickel, Cobalt and Vanadium are presented in Table 9 (in brackets). The median and 95% UCL results are only slightly lower than the original results, likely due in part to the weak relationship with <63 μ m PSD. The normalised mean, 80th percentile and 95% UCL values for Nickel are below the ISQG-low value of 21 mg/L, although the values calculated for Cobalt and Vanadium remain above twice the median concentrations for sediments in the Pilbara.

Table 10Correlation coefficients between the normalisers aluminium concentration, iron concentration and
<63µm particle size fraction.</th>

	<63 µm vs Al	<63 µm vs Fe	Al vs Fe
Correlation Coefficient	R ² =0.2	R ² =0.1	R ² =0.9

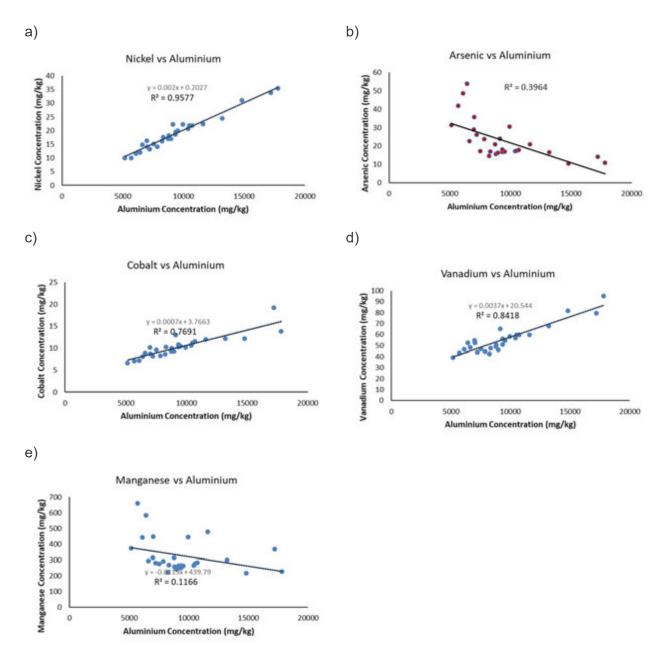


Figure 6 Linear regression showing the correlation between concentrations of Aluminium and a) Nickel b) Arsenic, c) Cobalt, d) Vanadium and e) Magnesium

4.4. Organic Compounds

The raw laboratory results for all organic compounds are included in Appendix B.

4.4.1. Hydrocarbons

The TPH, TRH, BTEXN and PAH analytes were tested for all twenty-eight (28) sites listed in Table 5. The list of individual analytes and respective Limits of Reporting (LoR), ANZECC/ARMCANZ (2000) ISQGs, Ecological Screening Levels (ESLs) and Health Screening Levels (HSLs) from NEPM (1999) for TPH and TRH are provided below in Table 11. The results provided have been normalised to 1% TOC in accordance with Simpson et al. (2013). Shaded yellow cells in Table 11 indicate concentrations above the LoR.

The TPH results are below all ISQG, ESL and HSL values. Only five (5) sites recorded concentrations above the LoR; two (2) within the inner channel (C9, C11), one (1) near the outfall (O3) and two (2) in the turning basin (TB7, TB10) of the original dredge footprint. No samples from the revised dredge footprint recorded concentrations above the LoR. Detectable concentrations are recorded within the C16-C34 carbon fractions in all five sites and at two sites from the inner channel (C9, C11) within the C34-C40 carbon fractions.

Similar low levels of hydrocarbons were detected in the TRH results, all below ISQG, ESL and HSL values. Seven (7) sites recorded concentrations above the LoR; three (3) within the inner channel (C8, C9, C11), one (1) near the outfall (O3) and three (3) in the turning basin (TB6, TB7, TB10) of the original dredge footprint. No samples from the revised dredge footprint recorded concentrations above the LoR. Detectable concentrations are recorded within the C34-C40 carbon fractions only.

All BTEXN and PAH analytes recorded concentrations below the LoR for all sites.

4.4.2. Organotins

Monobutyltin (MBT), Dibutyltin (DBT) and Tributyltin (TBT) were analysed in thirteen (13) samples as shown in Table 5. All sites recorded concentrations below the LoR for all three analytes.

4.5. Pesticides

The herbicide analytes were sampled at thirteen (13) sites as listed in Table 5. All 14 analytes in this suite were recorded below the LoR. The raw laboratory results for all herbicide analytes tested are provided in Appendix B.

Table 11Normalised results for TPH and TRH analytes to 1% TOC. Yellow shaded areas present results above
the LoR.

Analyte		Т	РН			т	RH	
Units LoR	C6-C9 mg/kg 3	C10-C14 mg/kg 3	C15-C28 mg/kg 3	C29-C36 mg/kg 5	C6-C10 mg/kg 0.2	C10-C16 mg/kg 0.2	C16-C34 mg/kg 0.2	C34-C40 mg/kg 0.5
ESLs	215	170		00	700	1000	3500	10000
HSLs	260	NL		IL	26000	20000	27000	38000
ISQGs			80					
C1_1	<3	<3	<3	<5	<3	<3	<3	<3
C2	<3	<3	<3	<5	<3	<3	<3	<3
C3_1	<3	<3	<3	<5	<3	<3	<3	<3
C4	<3	<3	<3	<5	<3	<3	<3	<3
C5	<3	<3	<3	<5	<3	<3	<3	<3
C6_1	<3	<3	<3	<5	<3	<3	<3	<3
C7	<3	<3	<3	<5	<3	<3	<3	<3
C8-1	<3	<3	<3	<5	<3	<3	<3	25.0
C9-1	<3	<3	20.0	60.0	<3	<3	<3	70.0
C10-1	<3	<3	<3	<5	<3	<3	<3	<3
C11	<3	<3	18.2	<5	<3	<3	<3	27.3
O1	<3	<3	<3	<5	<3	<3	<3	<3
O2	<3	<3	<3	<5	<3	<3	<3	<3
O3	<3	<3	20.0	<5	<3	<3	<3	30
OC1-1	<3	<3	<3	<5	<3	<3	<3	<3
OC2	<3	<3	<3	<5	<3	<3	<3	<3
OC3	<3	<3	<3	<5	<3	<3	<3	<3
RF2	<3	<3	<3	<5	<3	<3	<3	<3
RF3	<3	<3	<3	<5	<3	<3	<3	<3
TB1-1	<3	<3	<3	<5	<3	<3	<3	<3
TB2	<3	<3	<3	<5	<3	<3	<3	<3
TB3	<3	<3	<3	<5	<3	<3	<3	<3
TB4-1	<3	<3	<3	<5	<3	<3	<3	<3
TB5	<3	<3	<3	<5	<3	<3	<3	<3
TB6	<3	<3	<3	<5	<3	<3	<3	15.0
TB7	<3	<3	19.0	<5	<3	<3	<3	33.3
TB8	<3	<3	<3	<5	<3	<3	<3	<3
TB10	<3	<3	11.5	<5	<3	<3	<3	26.9

4.6. Nutrients

Nutrient levels were sampled for and analysed at twenty-eight (28) sites. There are no relevant guidelines for marine sediments. All nutrient levels are shown in Table 12 and raw laboratory results are presented in full in Appendix B.

Inorganic forms of nutrients in sediments (NO₂, NO₃, NH₄, FRP) are either below the laboratory LoR, or are recorded at very low concentrations. Levels above the LoR were recorded in one Nitrite 18WAU-0002 / R190033 Mardie Project: Sediment Quality Assessment Report

sample at 0.2 mg/kg (C2), in 16 samples for Nitrate below 0.6 mg/kg and in 13 sites below 0.6 mg/kg for reactive phosphorus. No results for ammonia are recorded above the LoR.

Results for Total Nitrogen (TKN/TN) and Total Phosphorus (TP) is therefore likely to be predominantly organically bound and representative of the typically low organic concentrations of sediments of the Pilbara which must be broken down into inorganic forms to be available for uptake by plants. Concentrations of TKN/TN range from 110 to 500 mg/kg and TP ranges from 179 to 468 mg/kg. However, these concentrations are notably higher than organic material reported in sediments near Onslow which ranged from 30 to 360 mg/kg and 43 to 293 mg/kg, respectively (O2 Marine 2018).

Analyte	NH4	NO ₋₂	NO ₋₃	NO _x	TKN	TN	TP	FRP
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
LoR	20	0.1	0.1	0.1	20	20	2	0.1
C1_1	<20	<0.1	0.2	0.2	180	180	342	<0.1
C2	<20	0.2	0.4	0.6	290	290	415	0.1
C3_1	<20	<0.1	<0.1	<0.1	160	160	400	<0.1
C4	<20	<0.1	0.2	0.2	190	190	468	<0.1
C5	<20	<0.1	0.1	0.1	280	280	422	0.2
C6_1	<20	<0.1	0.1	0.1	330	330	358	0.1
C7	<20	<0.1	0.1	0.1	110	110	349	<0.1
C8-1	<20	<0.1	0.6	0.6	170	170	341	<0.1
C9-1	<20	<0.1	0.1	0.1	360	360	342	0.1
C10-1	<20	<0.1	0.1	0.1	350	350	269	0.1
C11	<20	<0.1	0.1	0.1	430	430	275	0.1
O1	<20	<0.1	<0.1	<0.1	200	200	179	<0.1
O2	<20	<0.1	<0.1	<0.1	500	500	321	<0.1
O3	<20	<0.1	0.3	0.3	330	330	309	<0.1
OC1-1	<20	<0.1	<0.1	<0.1	180	180	274	0.6
OC2	<20	<0.1	0.3	0.3	480	480	252	0.2
OC3	<20	<0.1	0.2	0.2	440	440	338	0.2
RF2	<20	<0.1	0.1	0.1	380	380	466	<0.1
RF3	<20	<0.1	<0.1	<0.1	380	380	430	<0.1
TB1-1	<20	<0.1	<0.1	<0.1	330	330	288	0.1
TB2	<20	<0.1	0.2	0.2	490	490	348	0.2
TB3	<20	<0.1	0.2	0.2	370	370	245	0.2
TB4-1	<20	<0.1	<0.1	<0.1	160	160	211	0.2
TB5	<20	<0.1	<0.1	<0.1	400	400	314	<0.1
TB6	<20	<0.1	0.2	0.2	330	330	270	<0.1
TB7	<20	<0.1	0.1	0.1	360	360	282	<0.1
TB8	<20	<0.1	0.1	0.1	330	330	221	<0.1
TB10	<20	<0.1	0.1	0.1	320	320	180	<0.1
Median	<20	<0.1	0.1	0.1	330	330	317	<0.1
80 th %ile	<20	<0.1	0.2	0.2	392	392	383	0.2

Table 12Summary of all nutrient levels analysed at Mardie, WA.

4.7. PASS Field Screening

The results from the field screening test for PASS undertaken on twenty-eight (28) samples are presented in Table 13. Values across all sites for pH_F in deionised water range from 7.4 to 9.3, reflecting seawater influence (pH 8.2) and possibly dissolved carbonates typical of sediments in marine systems. Values for pH_{FOX} with 30% hydrogen peroxide remained high ranging from 6.8 to 8.6, and the maximum change in pH_F and pH_{FOX} values was 1.7. The reaction to hydrogen peroxide was recorded as "Moderate" in 13 samples, "Strong" in four (4) samples and "Extreme" in 10 samples. Whilst "Extreme" reactions were recorded in a reasonable number of samples from the site, results from the other two combining factors indicate a 'positive field sulphide identification' was not detected. The reactions observed were possibly caused from organic material within the sample.

Analyte	pH _F	pH _{FOX}	ΔрΗ	Reaction		Results	
					Reaction > 3	pH _{FOX} < 3	∆pH >2
C1_1	8.3	7	1.3	2	x	x	x
C2	8.3	7	1.3	2	х	x	x
C3_1	8.7	7	1.7	2	х	x	x
C4	8.4	7	1.4	2	x	x	x
C5	7.4	6.8	0.6	2	х	x	x
C6_1	8	6.9	1.1	2	x	x	x
C7	7.8	7	0.8	2	х	x	x
C8-1	8.5	7.9	0.6	3	х	x	x
C9-1	8.8	7.8	1	4	\checkmark	x	x
C10-1	8.8	8	0.8	4	\checkmark	x	x
C11	8.9	8.1	0.8	4	\checkmark	x	x
01	8.2	7.9	0.3	4	✓	x	x
02	8.7	7.6	1.1	3	х	x	x
O3	7.6	7.1	0.5	2	х	x	x
OC1-1	7.7	7.2	0.5	2	х	x	x
OC2	8	7	1	2	х	x	x
OC3	8.2	7.3	0.9	2	x	x	x
RF2	9.3	8.6	0.7	4	\checkmark	x	x
RF3	8.2	6.9	1.3	2	x	x	x
TB1-1	8.1	7.2	0.9	2	x	X	X
TB2	8.5	7.7	0.8	4	✓	X	x
TB3	8.4	7.8	0.6	4	✓	X	x
TB4-1	8.3	7.8	0.5	4	√	X	x
TB5	8.6	8.1	0.5	4	√	X	x
TB6	8.6	7	1.6	3	x	X	X
TB7	8.9	7.5	1.4	3	x	X	X
TB8	8.3	7	1.3	2	x	X	X
TB10	8.3	7	1.3	2	X	X	X

Table 13 Summary of pH_F, pH_{FOX} and Reaction results at each of the sites sampled at Mardie, WA.

4.8. Benthic Infauna

Benthic infauna sampling and analysis was carried out on samples collected at seven (7) locations within the turning basin and surrounding the outfall of the original dredge footprint. A total of 128 individuals from 27 morphological species were identified. The three most common taxa across all sites were Nematoda (n = 30), Sipuncula sp. (n = 25) and Polychaeta sp. 3 (n = 14). Polychaeta was the most diverse class in terms of the number of morphological species identified (14).

The full laboratory methods and results of the benthic infauna analysis are presented in Appendix E.

Key items identified from the report are:

- > The distribution and abundance of taxa across the survey area is heterogeneous, so there was no significant difference in species richness, diversity or composition identified across sites.
- > Surface feeding was the most common source of food for all sites and omnivores dominated across all sites.
- > The genus of foraminifera *Quinqueloculina* spp., which is found in relatively high abundance within these sediments, may be considered a good bioindicator for disturbance.

5. QA/QA Results

5.1. Field QA/QC Samples

The QA/QC sampling component of this marine sediment quality investigation included collection of Field QC samples for comparison to primary samples to determine interlaboratory, intra-laboratory and field variability in the data (i.e. triplicate, replicate, duplicate and split samples).

5.1.1. Physical Characteristics

The RPD results for the physical sediment characteristics data for the field quality control samples are shown in Table 14, results are presented in full in Appendix C. The RPD of ±35% in field splits/ duplicates and ±50% in field replicates/ triplicates for all physical parameters are met in two sample locations. One sample from three at O3 contained a higher proportion of gravel sized fractions, and there was a minor discrepancy of sand fractions at TB10. The interlaboratory split results from TB4 identifies there was some disparity in clay and gravel fractions within sub-samples of the same sample, indicating these results are likely to represent disparity between results from the empirical laboratories.

Table 14	Relative percent difference (RPD) or Relative Standard Deviation (RSD) values for the physical
	sediment characteristics in the field quality control samples. Yellow shaded cells identify values
	above the specified RPD/RSD.

Locations	Clay	Silt	Sand	Gravel	тос	Moisture
	(<2 µm)	(<2 µm)	(0.06-2.0 mm)	(>2 mm)	(%)	(%)
O3	3.2	10.6	84.7	1.5	0.16	28.8
TRIP4	8.3	13.3	76.6	1.8		20.8
TRIP5	5.5	11.8	68.4	14.3	0.2	21
RSD (%)	45.1%	11.4%	10.6%	124.5%	12%	19%
OC3	3	7	64	26	0.24	33.3
REP (T1)	4	5	59	32	0.34	29.9
RPD (%)	29%	33.3%	8.1%	20.7%	34.5%	10.8%
RF6	15	15	54	16	-	-
DUP (RFB)	13	13	59	15	-	-
RPD (%)	14.3%	14.3%	8.8%	6.5%	-	-
TB4/TB5	16.7	23.8	23	36.5	0.28	30.4
SPLIT (S2/S3)	31.4	29.6	22.8	16.2	0.24	32
RPD (%)	61.1%	21.7%	0.9%	77.0%	15.4%	5.1%
TB10	27	44.3	28.4	0.3	0.26	35.4
REP (T6)	32.1	51.7	15.8	0.4	0.26	36.4
RPD (%)	17.3%	15.4%	57.0%	28.6%	0.0%	2.8%

5.1.2. Metals

The RPD/RSD results for metal concentrations from the field quality control samples are shown in Table 15, results are presented in full in Appendix C.

The RPD of $\pm 35\%$ is not met for Antimony, Cadmium, Mercury and Silver in split samples from TB2 due to the difference in the LoR for these analytes at the secondary laboratory, which was slightly higher than the primary laboratory. Both laboratories recorded concentrations below the LoR for these analytes and results are therefore considered accurate. The results recorded for Manganese at this site (39.6%) was slightly above an RPD of $\pm 35\%$. NAGD (2009) recommends that results which fall outside these limits should be identified as estimates rather than precise values.

An RPD/RSD value of 66.7% was recorded for Cadmiun at sites C6 and O3. The large difference was due primarily to comparison of concentrations at the LoR of 0.1 mg/kg and below the LoR (<0.1 mg/kg). Converting the concentration below the LoR value of half the laboratory limit of reporting (0.05 mg/kg) for calculations in accordance with NAGD (2009) caused a misrepresentation of variability between the two samples, and this high RPD value for Cadmium may be disregarded in this case.

 Table 15
 Relative percent difference (RPD) and Relative Standard Deviation (RSD) values for the total metal concentrations in the field quality control samples. Yellow shaded cells identify values above the specified RPD/RSDs.

Analyte	Aluminium	Antimony	Arsenic	Cadmium	Chromium	Cobalt	Copper	Iron	Manganese	Mercury	Nickel	Silver	Vanadium	Zinc
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
LoR	50	0.5	1	0.1	1	0.5	1	1	10	0.01	1	0.1	2	1
C6	5150	0.25	31.4	0.1	21.1	6.6	6	27000	373	0.005	10	0.05	39.4	12.5
DUP (P1)	5530	0.25	24.2	0.05	21.9	6.6	5.8	25900	329	0.005	10.8	0.05	37.5	13.2
RPD	7.1%	0.0%	25.9%	66.7%	3.7%	0.0%	3.4%	4.2%	12.5%	0.0%	7.7%	0.0%	4.9%	5.4%
O3	6610	0.25	22.7	0.05	28.3	8.9	8.1	29400	294	0.005	14.8	0.05	48.2	18.4
TRIP5	7930	0.25	22.7	0.05	33.4	9.9	9.6	33800	391	0.005	17.1	0.05	54.9	21.6
RPD	18.2%	0.0%	0.0%	0.0%	16.5%	10.6%	16.9%	13.9%	28.3%	0.0%	14.4%	0.0%	13.0%	16.0%
OC3	8750	0.25	20.9	0.05	36.5	9.3	10.6	37100	316	0.005	17.1	0.05	49	20.5
REP (T1)	7640	0.25	23.1	0.1	29.3	8.1	8.8	32600	302	0.005	14	0.05	44.2	17.4
RPD	13.5%	0.0%	10.0%	66.7%	21.9%	13.8%	18.6%	12.9%	4.5%	0.0%	19.9%	0.0%	10.3%	16.4%
TB1	13200	0.25	16.6	0.05	50.5	12.2	19.1	48200	299	0.005	24.5	0.05	67.9	31.4
TRIP2	11800	0.25	15.1	0.05	47	11.2	17.7	44500	271	0.005	23.7	0.05	63.3	28.7
TRIP3	11900	0.25	15.6	0.05	47.3	11.5	17.3	44900	283	0.005	25.8	0.05	63.1	29.6
RSD	6.3%	0.0%	4.8%	0.0%	4.0%	4.4%	5.2%	4.4%	4.9%	0.0%	4.3%	0.0%	4.2%	4.6%
TB2	11600	0.25	21	0.05	44.7	12	13.5	44700	478	0.005	22.4	0.1	59.8	29
SPLIT (S1)	12000	3.5	20	0.2	41	11	15	39000	320	0.05	19	0.5	56	23
RPD	3.4%	173.3%	4.9%	120.0%	8.6%	8.7%	10.5%	13.6%	39.6%	163.6%	16.4%	133.3%	6.6%	23.1%
TB5	10400	0.25	17.2	0.05	42.9	10.6	13.6	38900	266	0.005	20.7	0.05	56.6	26.4
SPLIT (S3)	9700	0.25	19	0.05	44	11	12	37000	340	0.005	21	0.05	60	27
RPD	7.0%	0.0%	9.9%	0.0%	2.5%	3.7%	12.5%	5.0%	24.4%	0.0%	1.4%	0.0%	5.8%	2.2%
TB10	8790	0.25	15.6	0.05	37.8	10	11.8	35200	258	0.005	18.2	0.05	50.4	23.6
REP (T6)	9020	0.25	16.4	0.05	38.3	9.8	11.4	36600	254	0.005	18.7	0.05	50.9	23
RPD	2.6%	0.0%	5.0%	0.0%	1.3%	2.0%	3.4%	3.9%	1.6%	0.0%	2.7%	0.0%	1.0%	2.6%

5.1.3. Organic Compounds

Almost all results for organic compounds in field quality control samples are below the LoR. The RPD/RSD results for TPH/TRH from the field quality control samples are shown in Table 16.

Concentrations between interlaboratory split samples at TB2 and TB5 exceeded the RPD of $\pm 35\%$ for all TRH samples due to the secondary laboratory having a higher LoR. However, the cumulative totals of these LoRs are well below ISQG-low values for TPH of 280 mg/kg and all concentrations recorded were below the LoRs.

An RPD/RSD value of 66.7% was recorded for TPH chainage C15-C28 at site TB10. The large difference was due primarily to comparison of concentrations at the LoR of 3.0 mg/kg and below the LoR (<3.0 mg/kg). Converting the concentration below the LoR value of half the laboratory limit of reporting (1.5 mg/kg) for calculations in accordance with NAGD (2009) caused a misrepresentation of variability between the two samples, and this high RPD value for TPH chainage C15-C28 may be disregarded in this case.

The result recorded for TRH C16-C34 (54.5%) at TB10 was slightly above an RPD of \pm 50%. NAGD (2009) recommends that results which fall outside these limits should be identified as estimates rather than precise values.

The difference between the LoR between the primary and secondary laboratories continued to record RPD/RSD values greater than 35% for BTEXN, PAH, Organotin and Herbicide suites as described for TPH/TRH. However, the values remained below the LoR throughout all testing and represent the only exceedance of the RPD/RSD. Therefore, these high RPDs are negligible in the context of ANZECC ISQGs. The RPD results for these organic suites are not presented, although results are provided in full in Appendix C.

Of the surrogates tested for TPH/BTEXN, Base/Neutral Extractable, Organotin and Herbicide, only one RPD/RSD results value was calculated above 35%/50%. A duplicate sample from site C6 recorded an RPD of 38%, slightly above the 35% criteria, for 1.2-Dichloroethane-D4. However, all TPH, TRH and BTEXN results were below the LoR so this finding is unlikely to have affected interpretation of the laboratory results. The results for the organic surrogates are provided in full in Appendix C.

 Table 16
 Relative percent difference (RPD) and Relative Standard Deviation (RSD) calculations for QA/QC samples TPH/TRH analytes. Yellow shaded cells identify values above the specified RPD/RSDs.

Analyte		т	РН			т	RH	
	C6-C9	C10-C14	C15-C28	C29-C36	C6-C10	C10-C16	C16-C34	C34-C40
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
LoR	3	3	3	5	0.2	0.2	0.2	0.5
C6	1.5	1.5	1.5	2.5	1.5	1.5	1.5	2.5
DUP (P1)	1.5	1.5	1.5	2.5	1.5	1.5	1.5	2.5
RPD	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
O3	1.5	1.5	4	2.5	1.5	1.5	6	2.5
TRIP5	1.5	1.5	4	2.5	1.5	1.5	5	2.5
RPD	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	18.2%	0.0%
OC3	1.5	1.5	1.5	2.5	1.5	1.5	1.5	2.5
REP (T1)	1.5	1.5	1.5	2.5	1.5	1.5	1.5	2.5
RPD	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
TB1	1.5	1.5	1.5	2.5	1.5	1.5	1.5	2.5
TRIP2	1.5	1.5	1.5	2.5	1.5	1.5	1.5	2.5
TRIP3	1.5	1.5	1.5	2.5	1.5	1.5	1.5	2.5
RSD	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
TB2					1.5	1.5	1.5	2.5
SPLIT (S1)					12.5	25	50	50
RPD					157.1%	177.4%	188.3%	181.0%
TB5					1.5	1.5	1.5	2.5
SPLIT (S3)					12.5	12.5	12.5	12.5
RPD					157.1%	157.1%	157.1%	133.3%
TB10	1.5	1.5	3	2.5	1.5	1.5	7	2.5
REP (T6)	1.5	1.5	1.5	2.5	1.5	1.5	4	2.5
RPD	0.0%	0.0%	66.7%	0.0%	0.0%	0.0%	54.5%	0.0%

5.1.4. Nutrients

The RPD results for the physical sediment characteristics data for the field quality control samples are shown in Table 17, results are presented in full in Appendix C.

The RPD/RSD of 35%/50% is not met at three sites for nitrate (O3, TB2, TB5) and reactive phosphorus (OC3, TB5, TB10), and at TB5 for ammonia. Nitrite+nitrate, concentrations mirror the levels above the LoR for nitrate so similar results are recorded in this column. The cause of the high proportional variation between control samples was primarily due to comparison of small values below the LoR, where half the LoR is used in the calculation, with low concentrations of detected nutrients in the other sample, or differences in the LoR between the primary and secondary laboratory at TB and TB5. These results are not compared to ISQG-low guidelines and therefore are not used as precise values. Results from the QC samples indicate that recorded nutrient concentrations provide a reasonable estimate.

 Table 17
 Relative percent difference (RPD) and Relative Standard Deviation (RSD) calculations for QA/QC samples nutrient analytes. Yellow shaded cells identify values above the specified RPD/RSDs.

Analyte	NH ₄	NO-2	NO ₋₃	NOx	TKN	TN	ТР	FRP
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
LoR	20	0.1	0.1	0.1	20	20	2	0.1
C6	10	0.05	0.05	0.05	330	330	358	0.05
DUP (P1)	10	0.05	0.05	0.05	250	250	296	0.05
RPD	0.0%	0.0%	0.0%	0.0%	27.6%	27.6%	19.0%	0.0%
O3	10	0.05	0.3	0.3	330	330	309	0.05
TRIP5	10	0.05	0.05	0.05	230	230	241	0.05
RPD	0.0%	0.0%	142.9%	142.9%	35.7%	35.7%	24.7%	0.0%
OC3	10	0.05	0.2	0.2	440	440	338	0.2
REP (T1)	10	0.05	0.3	0.3	350	350	324	0.1
RPD	0.0%	0.0%	40.0%	40.0%	22.8%	22.8%	4.2%	66.7%
TB1	10	0.05	0.05	0.05	330	330	288	0.1
TRIP2	10	0.05	0.05	0.05	310	310	258	0.1
TRIP3	10	0.05	0.1	0.1	330	330	231	0.1
RSD	0.0%	0.0%	43.3%	43.3%	0.0%	0.0%	15.5%	0.0%
TB2	10	0.05	0.2	0.2	490	490	348	0.2
SPLIT (S1)	7.1	0.05	0.05		350	350	300	0.25
RPD	33.9%	0.0%	120.0%	n/a	33.3%	33.3%	14.8%	22.2%
TB5	10	0.05	0.05	0.05	400	400	314	0.05
SPLIT (S3)	5.7	0.05	0.11		440	440	250	0.25
RPD	54.8%	0.0%	75.0%	n/a	9.5%	9.5%	22.7%	133.3%
TB10	10	0.05	0.1	0.1	320	320	180	0.05
REP (T6)	10	0.05	0.1	0.1	470	470	271	0.2
RPD	0.0%	0.0%	0.0%	0.0%	38.0%	38.0%	40.4%	120.0%

5.1.5. PASS Field Screening

The comparison of pH_F and pH_{FOX} results provide RPD values less than 35%. The RPD results for these organic suites are not presented, although results are provided in full in Appendix C.

5.2. Laboratory QA/QC

The laboratory quality control reports and the laboratory QA/QC compliance assessment reports are provided in Appendix C. The findings of these results determined:

- > No Method Blank outliers occur;
- > No Duplicate outliers occur;
- > Laboratory Control outliers exist;
- > Matrix Spike outliers exist;
- > Surrogate recovery outliers exist;
- > Analysis holding time outliers exist; and

> Quality Control Sample Frequency Outliers exist.

No results were qualified as unusable during the data review process due to laboratory control, matrix spike, analysis holding time or quality control sample frequency outliers.

From the December 2018 and February 2019 sampling events, a laboratory control recovery for MBT and DBT were slightly greater than the upper control limit of 132%. However, all concentrations recorded for MBT and DBT in the samples are below the LoR.

Matrix spike recoveries were not determined for Aluminium and Iron in four samples (TRIP 1, Trip 3, O3, RF3) due to the background level being greater than or equal to four times the spike level. NAGD (2009) recommends matrix spike data should not be reported if the naturally occurring levels in the sample are greater than twice the spiking level. Therefore, the matrix spike recoveries for Aluminium and Iron can be omitted from reported results. Ammonia background was also greater than four times the spike levels in one anonymous sample.

The matrix spike recovery for TP from sample Trip 1 was 60.8%, less than the lower data quality objective of 70%. The results for TP were considered to be variable and used for background informative purposes, specific values were not compared to SQG values.

The organotin surrogate Tripropyltin had recovery levels slightly greater (~9%) than the upper data quality objective.

All analysis holding time outliers occurred from samples collected in January 2019. Analysis holding times for TPH, TRH, BTEXN and PAHs were approximately 34-35 days overdue by the time analysis was undertaken. Deionised water samples for the Rinsate blank were also overdue for nutrients and hydrocarbons. Other parameters identified with a holding time breach included the PASS field screen analysis for six (6) sites tested, and moisture, hydrocarbons and nutrients for the three QC blank samples. All results for these parameters were very low, below the LoR, or PASS was not detected, indicating there is a very low likelihood these outliers would affect interpretation of the findings.

The quality control frequency of a laboratory duplicate and matrix spike for Rinsate samples was not undertaken for the semi-volatile fraction of TRH and PAH/ Phenols, although all samples were below the LoR anyway. The TRH Volatile/ BTEXN matrix spike testing was one test short of conformance with NEPM (1999) standards.

6. Conclusions

A baseline sediment quality assessment has been undertaken in the Mardie Project area to document background marine environmental quality within the receiving marine environment and enable the derivation of sediment and benthic infauna environmental quality criteria (EQC). The sampling was undertaken with consideration to the requirements of the Environment Protection (Sea dumping) Act 1981 and associated guidance and includes both physical (i.e. particle size) and chemical (metals, tributyltin, hydrocarbons) testing in accordance with the requirements specified in the ESD. The marine project footprint was revised following the first two sampling events, with one further sampling event conducted following the project modification.

The samples collected within the nearshore proposed Development Envelope at Mardie are comprised of uncontaminated sediments and are considered suitable for onshore disposal. The background sediment quality at the site is considered to be representative of natural environmental conditions that are largely un-impacted by anthropogenic influences. However, some concentrations for metals and nutrients in sediments are naturally higher than recorded for marine sediment programs in other areas of the Pilbara, Western Australia, and revised site-specific EQC are recommended.

6.1. Physical Characteristics

The colour of the sediment samples varied from brown/grey, grey/red/, dark grey, red/brown, dark brown to brown. Sand and gravel size fractions dominate the PSD results from locations within the channel (C1-1 to C8) and the outer channel (OC1-OC3) of the original dredge footprint, and within the revised dredge footprint sample area (RF1-RF6). Sites closer to shore within the turning basin (TB1-TB10), around the outfall (O1-O3) and the inner channel (C9-C11) of the original footprint sediment samples were comprised of a higher proportion of fines (i.e. silt and clay). The TOC levels are typically low, although notably lower proportions of TOC and moisture were found in samples collected within the channel of the original dredge footprint, between the original proposed turning basin and revised dredge sample area. Samples from this area also comprised of very low proportions of fines, suggesting this area experiences strong currents immediately adjacent to the intertidal mudflat which scours fine sediment from the seabed.

6.2. Metals and Metalloids

The results for total metals in sediment from the Mardie Project area indicate the estimated natural background concentrations are typically higher than recorded across the Pilbara region. The 95% UCLs of the mean were calculated across all 28 sites. The 95% UCL is above the ISQG-low value for Arsenic and Nickel. In addition, the 95% UCL is above the background SQG for Pilbara waters for Aluminium, Cobalt, Iron and Vanadium. Three samples exceed the low reliability guideline value for Manganese. All concentrations for all metals are below EIL and HIL screening levels. The standard deviation of the sample data is less than 50% of the relevant HILs across all metals and no single value exceeds 250% of the relevant HILs.

Normalisation tests conducted on the results for metals in sediment samples found a strong positive correlation between Aluminium and Iron, although weak correlations for comparison of these natural elements with the <63 μ m PSD. The results indicate naturally high levels of trace metals occur in marine

sediments in the Development Envelope, likely dependant on the geology and mineralogy of the area, although apparently not strongly correlated to PSD. This is contradictory to findings from other studies in the region where grain size was determined to be the principle factor which controls concentrations of most trace metals in whole sediments (O2 Marine 2018). However, the PSD results collected from the Development Envelope were highly variable. The results may be influenced by terrigenous input from the Fortescue River catchment, similar to DEC (2006) findings of higher natural concentrations in sediments from Ashburton River Mouth compared to levels measured at other locations along the Pilbara coast.

The data for metal contaminants that recorded elevated concentrations (Arsenic, Nickel, Vanadium, Cobalt and Manganese) were graphed against the Aluminium normaliser concentration. A strong positive correlation with Nickel, Cobalt, and Vanadium suggests these metals are lithogenically derived and of natural origin. The normalised results for Nickel are below the ISQG-low value of 21 mg/L, although values for Cobalt and Vanadium remain above the SQG for Pilbara waters. Weak linear correlations are observed between Aluminium and Arsenic or Manganese, therefore normalisation was not undertaken on these metals. DEC (2006) concluded that the ISQG-low value for Arsenic may not be suitable for use across much of the marine environment of the Pilbara region and that alternative guidelines based on local data should be derived. In addition, the Manganese low reliability guideline value was derived from The Ontario Ministry of the Environment and therefore natural exceedance of this value is unlikely to indicate a Contaminant of Potential Concern.

Site-specific EQC have been derived for metals in sediment for the Mardie Project area in accordance with DEC (2006) and EPA (2016) and are presented in Table 18.

6.3. Organic Compounds

Organic compounds tested included TPH, TRH, BTEXN, PAHs and organotins. All contaminant concentrations are below ANZECC/ARMCANZ (2000) ISQG-low, ESL and HSL values, and the vast majority of organic analytes are below the laboratory LoR. The only organic compounds recorded above the LoR are TPH/TRH concentrations in the larger carbon fractions at seven sites.

EQC for these organic compounds will use values derived in ISQG or the guideline may be no detectable concentration.

6.4. Pesticides

All 14 tested Phenoxyacetic Acid Herbicide analytes are recorded at concentrations below the LoR. Herbicides were identified early as a CoPC due to historical use on Mardie Station. This SAP found no evidence of Herbicides in marine sediments.

EQC for these herbicide analytes will use values derived in ISQG or the guideline may be no detectable concentration.

6.5. Nutrients

Inorganic forms of nutrients in sediments (NO₂, NO₃, NH₄, FRP) are either below the laboratory LoR, or are recorded at very low concentrations. Results for TKN/TN and TP is therefore likely to be

predominantly organically bound and representative of the typically low organic concentrations of sediments of the Pilbara, which must be broken down into inorganic forms to be available for uptake by plants. Concentrations of TKN/TN range from 110 to 500 mg/kg and TP from 179 to 468 mg/kg. However, these concentrations are notably higher than organic material reported in sediments near Onslow which ranged from 30 to 360 mg/kg and 43 to 293 mg/kg, respectively (O2 Marine 2018).

Site-specific EQC have been derived for nutrients in sediment for the Mardie Project area in accordance with DEC (2006) and EPA (2016) and are presented in Table 18. No EQC are provided for Ammonia as this would be based on no detectable concentration.

6.6. PASS Screening

Values across all sites for pH_F in deionised water range from 7.4 to 9.3, reflecting seawater influence (pH 8.2) and possibly dissolved carbonates typical of sediments in marine systems. The maximum change in pH_F and pH_{FOX} values was 1.7. The reaction to hydrogen peroxide was recorded as "Extreme" in 10 samples. Whilst "Extreme" reactions were recorded in a reasonable number of samples from the site, results from the other two combining factors to identify a 'positive field sulphide identification' were not triggered and it is therefore PASS are considered to not be detected. The reactions observed were possibly caused from organic material within the sample.

6.7. Benthic Infauna

The distribution and abundance of benthic infauna taxa across the survey area is heterogeneous, and there was no significant difference in species richness, diversity or composition identified across sites. The results suggest that it would be difficult to develop EQC for detecting anthropogenic impacts based on the variability of benthic infauna observed within samples. The genus of foraminifera *Quinqueloculina* spp., which is found in relatively high abundance within these sediments, may be considered a good bioindicator for disturbance. These foraminifera have been shown to be sensitive taxa and the faunal composition and morphology respond to human-induced environmental perturbations in coastal marine areas. However, further targeted investigation would be required to develop specific biomonitoring EQC.

Table 18Recommended environmental quality criteria (EQC) for metals and organic nutrients in whole sediment
at the Mardie Project area

Analyte		Level of Ecologic	al Protection (LEP)	
	Мах	High	Moderate	Low
Units	mg/kg	mg/kg	mg/kg	mg/kg
Aluminium	10,620	17,750	17,750	26,625
Antimony	0.5	2	2	25
Arsenic	30	36	36	54
Cadmium	0.1	1.5	1.5	10
Chromium	44.5	80	80	370
Cobalt	11.8	20.4	20.4	30.6
Copper	13.5	65	65	270
Iron	42,320	73,700	73,700	110,550
Manganese	415	565	565	847
Mercury	<0.01	0.15	0.15	1
Nickel	22.3	35.8	35.8	52
Silver	0.1	1	1	3.7
Vanadium	59	104	104	157
Zinc	27.4	200	200	410
Total Nitrogen	392	660	660	990
Total Phosphorus	383	635	635	952
Nitrite+Nitrate	0.2	0.2	0.2	0.3
active Phosphorus	0.2	0.4	0.4	0.6

7. **References**

- Ahern CR, McElnea AE, Sullivan LA (2004) Acid Sulfate Soils Laboratory Methods Guidelines. Queensland Department of Natural Resources, Mines and Energy, Indooroopilly, Queensland
- ANZECC/ARMCANZ (2000a) Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Volume 1: The Guidelines. Australian and New Zealand Environment and Conservation Council, Agriculture and Resource Management Council of Australia and New Zealand, Canberra, ACT, October 2000
- ANZECC/ARMCANZ (2000b) Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Volume 2: Aquatic Ecosystems — Rationale and Background Information. Australian and New Zealand Environment and Conservation Council, Agriculture and Resource Management Council of Australia and New Zealand, Canberra, ACT, October 2000
- Chevron (2010). Wheatstone Project Draft Environmental Impact Statement/ Environmental Review and Management Programme, Technical Appendix Q5 Sediment Quality Assessment Wheatstone Dredging Program, Western Australia.
- DEC (2006). Background quality of the marine sediments of the Pilbara coast. Department of Environment and Conservation, Marine Technical Report Series, No. MTR 1.
- DER (2014). Assessment and Management of Contaminated Sites: Contaminated Sites Guidelines. Department of Environmental Regulation, Government of Western Australia
- Fandry, C. Revill, A. Wenzinker, K. McAlpine, K. Apte, S. Mansini, R. Hillman, K. (2006). Contaminants of Australia's North West Shelf: sources, impacts, pathways and effects – North West Shelf Joint Environmental Management Study, Technical Report No. 13, Western Australian Department of Environment
- NAGD (2009). National Assessment Guidelines for Dredging. Department of the Environment, Water, Heritage and the Arts, Commonwealth of Australia.
- NEPM (2013). National Environment Protection (Assessment of Site Contamination) Amendment Measure (NEPM) 2013, Volume 3, Schedule B2, Guideline on Site Characterisation.
- NEPM (2013a). National Environment Protection (Assessment of Site Contamination) Amendment Measure (NEPM) 2013, Volume 8, Schedule B5c, Guideline on Ecological Investigation Levels for Arsenic, Chromium (III), Copper, DDT, Lead, Naphthalene, Nickel and Zinc.
- O2 Marine (2017). Onslow Marine Support Base Stage 2 Capital Dredging: Sediment Quality Assessment. Report prepared for OMSB Pty Ltd, Report No. 1701010
- O2 Marine (2019a). Mardie Project Subtidal Benthic Communities and Habitats. Report prepared for Mardie Minerals Pty Ltd. Report No. R190045
- O2 Marine (2019b). Mardie Project Marine Environmental Quality Plan. Report prepared for Mardie Minerals Pty Ltd. DRAFT

- O2 Marine (2019c). Port of Dampier: Marine Environmental Quality Sampling and Analysis Plan. Report prepared for Pilbara Ports Authority. Report no. R1800118
- Persaud D, Jaagumagi R & Hayton A 1990. The provincial sediment quality guidelines. Ontario Ministry of the Environment.
- Simpson, SL, Mosley, L, Batley, GE and Shand, P 2018, National Acid sulfate soils guidance: Guidelines for the dredging of acid sulfate soil sediments and associated dredge spoil management, Department of Agriculture and Water Resources, Canberra, ACT. CC BY 4.0.

Appendix A Chain of Custody Forms

-		Pr	oject Deta	rils	S. M. K.		195	1.		1.000	1.14	Sa	mpling Requirements	Sector States			Weather Observa	tions	
1	Job Number:				and the second				1.4	Pr	imary I	Freed	Secondary Lab	Benthic Infauna Lab	Sampling Dates:		Contraction of the	and and	
23	Project Title:	Mardie Project - Sedi	ment Sam	pling	1111		191	5.18		ALS Sedim	nent - P	Per Sample	MPL Sediment - Per	Sieved Sediment - Per Sample	Air Temp. (°C):		1.1.		
	Client:	BCI Minerals	-	1. N		1	5.00	2		Carlos Carlos Contra		ir (J) (1 if no	Sample 3x 250ml Glass Jar (1 if no ORG)	1x 500g clipseal plastic	Wind Speed (knts):				1 1 1
	Field Lead:	Claudio Del Deo										lastic bag (P)			Wind Direction:	and the state			10 10 10 10 10 10 10 10 10 10 10 10 10 1
Put.										1x 50g	plastic	bag (P)	bag (P): 1x 50g plastic		Sea State:	10		A State	AND PERSON
SITE	Latitude	Longitude	Method	BI	CoPC	ORG	PHYS	TRIP	SPLIT	DATE		TIME	WATER DEPTH (m)	SEDIMENT TYPE	COLOUR	FOREIGN	SHELL/BIOTA	ODOUR	COMMENTS
C3- 1	21"3' 3.083" S	115"56' 4.327" E	vc		ນ	ZJ	ЗP		- All	12/12	108	MARCO	Im	Good	Grey Md		Fligh	Mill	ref.
C3- 2	\$1	10 -	VC	1			3P	A. 1.		(,		((<i>ii</i>	Giovil	Grephed	See."	High	MIL	11
C3- 3			VC			1	3P			-					an an			The the	
C3- 4	-		vc			and the second	ЗP	1000							T. Shall			april 1	N-
C4	21"3' 4.003" S	115*56' 0.715" E	G		ม		ЗР	×		12/16	2/18	10:00	1 Sm	SIL	17.2			14 mars	
C5	21*3' 11.351" 5	115°55' 59.055" E	G	1	บ		ЗР			12/12	118	11:20	1 2 m	Grov					Night -
C6- 1	21°3' 13.633" S	115*55' 58.337" E	Wash	No. of the other	ນ	21	ЗР		×	12/17	2/18	11:2	2 3 m		1			an the	
C6- 2			VC	Þ		4.4 Mar 10	зр					100		1					1 martin
C6- 3			VC				ЗP										2		Nime
C6- 4			VC	1.1.1.1	-		ЗР	110	1	2	1	4		C	the	-		RT.	D" M
C7	21°3' 15.534" S	115"55' 57.208" E	VC		1J	23	ЗР			15	(10	1836	1	SALID	Brown		bligh	HX	Stow
	A.L.		2.0								1	121					-		28

Gro

A STA

and the second

14	Contraction of the	Pro	oject Detai	ils	CIE/	13	533			Sa	ampling Requirements	No. Contraction		2	Weather Observa	itions	All States
	Job Number:	18WAU-0002						200	Prima	ary Lab	Secondary Lab	Benthic Infauna Lab	Sampling Dates:		Mark S.	AR STAR	
Party and	Project Title:	Mardie Project - Sedim	nent Sam	pling					and the second second	t - Per Sample	MPL Sediment - Per Sample	Sieved Sediment - Per Sample	Air Temp. (°C):				The states of
1	Client:	BCI Minerals	E.S.							is Jar (J) (1 if no RG)			Wind Speed (knts):				
	Field Lead:	Claudio Del Deo		Sec.					2x clipseal 500	g plastic bag (P)	if no ORG) 2x clipseal 500g plastic	bag per sample	Wind Direction:		1	Sec. 1	
									TX DOR Die	stic bag (P)	bag (P): 1x 50g plastic		Sea State:		1.00		
E	Latitude	Longitude	Method	BI C	COPC (ORG	PHYS- T	TRIP SPLIT	DATE	TIME	WATER DEPTH (m)	SEDIMENT TYPE	COLOUR	FOREIGN	SHELL/BIOTA	ODOUR	COMMENTS
2	13 22.168 S	115"55" 57.979" E	vc		IJ		3P		15/11	2 1230	8.5	SAND	BROUN				Refai
	1	1	vc				зр			1	1	1					
	1/		vc				3P		C	11	101		Nº AS	and and		- sale	
	V.		vc				ЗP		V	V	V	V		AR !	17	-	
2	1*3' 2° O	11 55' 57.520" E	vc		ນ		3P		15/1/1	19 11 15	\$ 2.3	SADED SILT	CANK	A State	10%	HA	1
NAME OF CASE	1		vc				3P		Kju		6 7 82	SAND-GRAL	1 GRAY	1	1 Print	1	1.3 m
	1		vc				ЗР							Start Start			17.00
A PUT SUL			vc				ЗР		d			ali			and the second	A	The second
2	1*3' 37.300" S	115*55' 57,101" E	vc		บ		ЗР		12/12/1	8 800	1	A A A	SAND .		20		Alu pe
	1		VC		1		3P									No. 1	- groi
3			VC				3P		6		T/	-		- 11			· Si
1		10.2	VC	(and			зр		1.30					- Starl	Card -		

15 States	Pr.	oject Det	ails		196		1990	L SIG		100	Sam	pling Requirements	a total and the			Weather Observ	vations	
Job Number	: 18WAU-0002							1.	Prima	ry Lab		Secondary Lab	Benthic Infauna Lab	Sampling Dates:		Ned Star	1 - Caller	
Project Title	: Mardie Project - Sedi	ment Sam	pling			1	The second	and the second second		t - Per Sam	100 C	MPL Sediment - Per Sample	Sieved Sediment - Per Sample	Air Temp. (°C):		Same to		and the second
Client	BCI Minerals									s Jar (J) (1 i RG)		3x 250ml Glass Jar (1 if no ORG)	1x 500g clipseal plastic	Wind Speed (knts):	Strate Co	and the		1.1.1
Field Lead	: Claudio Del Deo							2x clip: 1x	seal 500g 50g plas	RG) g plastic ba stic bag (P)	ig (P)	2x clipseal 500g plastic bag (P): 1x 50g plastic	bag per sample	Wind Direction:		and the second	181	Salataria .
		1221	-	1	E.		1		4		100	e de la grande de la	and the second	Sea State:				and the second
Latitude	Longitude	Method	BI	CoPC	ORG	PHYS	TRIP SPLI	r ı	DATE	TIM	IE	WATER DEPTH (m)	SEDIMENT TYPE	COLOUR	FOREIGN	SHELL/BIOTA	ODOUR	COMMENTS
21°3' 39.167" S	115°55' 57.646" E	G	www.	ม	2J	ЗР	10 3	57	Paff	\$10.	De	A	and weather	de j'			N. AN	DIVING
21° 2' 13.280" S	115" 56' 15.964" E	vc		IJ		3P		16	[1] 1ª	1 8,7	Ø	3.4	Son Stal	Brach		10%	MADUNE	refo
1		vc	1.1.1	No. 1	8	3P			1	(1	CIAY					
	1.35	vc		14		3P			1							1	1.27	
		VC				ЗP			De-				A Press		1. 8		in the	1 State
21° 2' 20.577" S	115" 56' 14.246" E	G		ม		ЗР		51	2/13	(9)	'so	4.				1	14	DUNH
21" 2' 26.830" 5	115° 56' 13.812" E	G		3 1		6 3P		15	lizh	4 19:	30	3.5		Sec. 1		A.C.		17
21° 3' 53.039" S	115°55' 48.447" E	G	3P	IJ		ЗР		1E	101	197:	:30	2.00.	X			an .	Re	topsv
21° 3' 52.036" S	115°55' 52.096" E	G	ЗP	11	A MARK	ЗP	1	16	011	1993	0	1.6	SIT			all.	Ŧø	OF O VA

/ Rey

5	CT2	MURINE				i.									65 T				k	k 4-	6
	Г	- Alexan	Pr	oject Deta	ails	1		1	2.10		ALC: N	144		San	npling Requirements	d gen danker		the local second	Weather Observ	ations	Steven (Part
	1	Job Number:	18WAU-0002							in .		Primar	ry Lab	in the	Secondary Lab	Benthic Infauna Lab	Sampling Dates:		- Alar	1.1.1.1.1	and the second
	1	Project Title:	Mardie Project - Sedi	ment Sam	pling						ALS Se	diment	- Per	Sample	MPL Sediment - Per	Sieved Sediment - Per Sample	Air Temp. (°C):	C. P. S. S.	The second	1000	and the second
		Client:	BCI Minerals										CONTRACTOR) (1 if no	Sample 3x 250ml Glass Jar (1	1x 500g clipseal plastic	Wind Speed (knts):			1	Sec. all
		Field Lead:	Claudio Del Deo	1	1.1		14		1						if no ORG) 2x clipseal 500g plastic	bag per sample	Wind Direction:		17.11.58		
	100										IX	50g plast	stic ba	g (P)	bae (P): 1x 50e plastic		Sea State:				
C. con	SITE	Latitude	Longitude	Method	BI	CoPC	ORG	PHYS	TRIP S	PLIT	D	ATE		TIME	WATER DEPTH (m)	SEDIMENT TYPE	COLOUR	FOREIGN	SHELL/BIOTA	ODOUR	COMMENTS
KIA.	ТВ 1-1	21*3' 44.901" 5	115°55' 58.487" E	VC	102	S.	4	ЗP			15	1019	91	0'20	5	SPUT	for	COF	c te	2026	Rof Ill ONAU
	TB 1-2	*	1	vc				ЗP					10		A					N.C.	1646
	ТВ 1-3			vc				3P				1									
	тв 1-4	V	V	vc			0	ЗP			1			V				1	1.		the state
V	TB 2	21°3′ 45.411" S	115*55' 56.891" E	G	3P V	1J	2J	ЗP	×		k	12	1	150	, 3,6	SULF			and the		The second
\checkmark	TB 3	21"3' 45.664" S	115*56' 4.225" E	G		ມ		ЗР			12	12	1	230			and the second		and and	1114	الم المر
*	ТВ 4-1	21°3' 49.148" 5	115°56' 2.833" E	vc		1J		60		1 3 2	15	1/19	0	9:00	1.9	SILT	SPI	NFF	60 AZ	D	NG+ PIST
V	тв 4-2	, R	11 .	VC				ЗP				1		1		1.				1. June 1.	122
V	ТВ 4-3	a	N .	vc	8			ЗР								des and					
	ТВ 4-4	CI.	11 .	vc				3P							V						
	TB 5	21°3' 50.946" S	115°56' 1.608" E	G		IJ	2J	ЗP		x	16	help.	2	9:48	5 1,8	SIGAN	9		in the second		
	TB 6	21*3' 52.703" S	115*56' 2.347" E	G	ЗР	IJ	21	ЗP			[6]	1/19	1	0:10) 1.7					The second	

A

5-6

Pri	oject Deta	ails	Sec. 2	1		5	ampling Requirements		A STREET		Weather Observa	tions	and the second
Job Number: 18WAU-0002					Prin	mary Lab	Secondary Lab	Benthic Infauna Lab	Sampling Dates:		1.1.2		Sure to sure
Project Title: Mardie Project - Sedin	ment Sam	pling			and the second second	ent - Per Sample	MPL Sediment - Per Sample	Sieved Sediment - Per Sample	Air Temp. (°C):	1.20	1. 1.		
Client: BCI Minerals						ass Jar (J) (1 if no ORG)		1x 500g clipseal plastic	Wind Speed (knts):	1	1.1	1.1	Table
Field Lead: Claudio Del Deo						ORG) OOg plastic bag (P plastic bag (P)	if no ORG)) 2x clipseal 500g plastic bag (P): 1x 50g plastic	bag per sample	Wind Direction:	100	END .	S Miles	ACCU.
		•	1.13				Sec.	and the state of the	Sea State:	1		A Part	Ser 1
SITE Latitude Longitude	Method	BI CoPC	ORG PHYS	TRIP SPLI	DATE	TIME	WATER DEPTH (m)	SEDIMENT TYPE	COLOUR	FOREIGN	SHELL/BIOTA	ODOUR	СОММЕ
ТВ 7 21°3' 52.700" S 115°56' 0.554" E	G	IJ	ЗР		611	19 1025	2	a shi		280	the state		19
cil · ·	G	63	66	1	611	19	13 10	SAND/SU	i de	1510	XI	38	11-
cio ori	VC	15	• 31		18/11	19 125	0 7.6	Star In	0				
C10-1			31	>	1.22	1.1.2	inter	RELIN					
10-2	1 V	11.00	3P					1					
400	1	in the	01				The second	China in the second					

						atory:						ALS						Page 1 of 2 Please Note:
Project:	Mardie P	Project: Sediment S	ampling		Ad	dress:												Please sign copy on receipt of samples and email signed copy of CoC record to O2M
Client:	BCI Minerals	Job No.:	18WAU-0002		Lab. Co	ntact:					Laur	ren Bia	gioni		1			Project Manager.
	our minerara	200 100.	101110-0002		Cor	tainer	s				Ana	lyse = /	A; Hold	l = H	1.1			
Lab Quote No.:	EP/1145/18	Turnaround Time:	Standard	ter / A-Ali	lass / p.	2		; EG035-	; EP080-			202)	37)			55)		Email laboratory analysis results to O2M Project Manager.
O2M Project Manager	Claudio Del Deo	Email Address: claudio.deldeo@c	2marine.com.a	ie Matrix e / W-Wa	be -Vial / G-G c Bag	amples	ime (mL)	EG005-SD	P132B-SD 71-SD)	(NT-8AS)	(060d	acids (EP2	Test (EA0	(EA026)	(E004)	tent (EA0	(EA150H/Ea152	
O2M Sample ID	Laboratory Sample ID	Date	Time	S-Soil / SL-Sludg	Type B-Bottle / J-Jar / V-Vial / G-Glass / Plastic Bag	No. of Samples	Total Volume (mL)	Metals (EG020-SD; EG005-SD; SD)	PAH, TRH/BTEXN (EP132B-SD; SD; EP071-SD)	Nutrients (NT-8AS)	TBT (EP090)	Phenoxyacetic acids (EP202)	ASS Screening Test (EA037)	ASS (Scr) (EA026)	TOC (EP003)	Moisture Content (EA055)	PSD (EA150	Comments
SPLIT-P1	DE	18-		s	3J, 3P	1	1800	Α	A	Α	A	A	A	н	A	A	А	All soil samples are marine sediment
SPLIT-P2		15-1-19	-	S	10 3P	1	1300	Α	Α	Α			A	ТН	А	A	A	TRY (PSD) IT LAPS
TRIP-1 -	DE	E-18		s	3J, 3P	1	1800	Α	Α	Α	А	A	A	н	Α	A	A	
4 TRIP-2		15.1-19	10:20	S	2.4	1	1800	Α	Α	A	А	A	A	н	Α	A_	A	TBI
TRIP-3		15:1-19	10:20	S	2.4	1	1800	Α	Α	Α	Α	A	A	н	Α	A	A	VRI
TRIP-4		16-1-19		S	51, 3P	1	1800	-	A	A	A	A	A	211	AN	A	A	PSD - 03(ESS
TRIP-5		16-1-19		S	1J, 3P	1	1800	A	A	Α			A	н	A	Α	А	PSD - 03 (ESS.
TRIP-6		16-1 119		s	1J, 3P	1	1800	A	А	Α			A	н	A	/A	A	TRID
RING MET 1		5-1-19	17:10	s	18	1	500	A	AN I	Α					1		-	
TRIPB	TBSSRI	6-12.13	11.20	s	1B	1	500	Α	A	Α							1	HEVER OPEN.
SIELDE FR	TBS519	81-51-0	11.20	s	IJ	1	250	A	A	A								HEVER OPEN FIELBLANC (OPEN ON)
- TB1-1		15-1+19	10:20	s	3J, 3P	1	1800	Α	A	A	A	A	A	н	A	A	A	
TB1-2	Ret	- 51		s	ЗP	1	1050						Α	н		A	A	
TB1-3	4			s	3P	1	1050						А	н		A	Α	
тв1-4				s	ЗP	1	1050	-			. Sec.		A	н		Α	A	
TB2	DEC	18		s	3J, 3P	1	1800	Α	A	A	A	A	A	н	А	A	A	
ТВЗ	DEC	18		5	1J, 3P	1	1300	А	А	A			A	н	A	A	A	

-07-

1

t Re

18	TB4-1		15.1.19	9:00	s	1J, 3P	1	1300	А	А	Α			Α	н	A	A	A	
19	TB4-2		* ///		s	ЗP	1	1050						A	н	A	Α '	A	Refuse No sample
20	TB4-3				S	3P	1	1050						Α	н	A	A	Α	11 +1 -11
24	TB4-4				s	ЗP	1	1050						А	н	А	Α	Α	1. 11
22	TB5		16-1-19	9:45	S	3J, 3P	1	1800	А	Α	Α	A	Α	Α	н	Α	Α	Α	
28	твб			10:10	S .	3J, 3P	1	1800	А	Α	Α	А	Α	Α	н	Α	Α	Α	
24	тв7		16-1-19	10:25	s	1J, 3P	1	1300	Α	Α	Α			A	н	Α	A	Α	
25	TB8		16-1-19	10:45	s	3J, 3P	1	1800	Α	Α	Α	Α	Α	Α	н	Α	A	Α	N
21	TB9-1	DEC		1	S	1J, 3P	1	1300	Α	Α	Α	-		Α	н	A	Α	Α	
27	TB9-2	1	1	1.00	s	3P	1	1050						A	н		Α	Α	- 7
28	TB9-3				s	3P	1	1050						A	н	-	Α	Α	
29	TB9-4		V	V	S	3P	1	1050						Α	н		Α	Α	
50	ТВ10		16-1-19	11:40	S	3J, 3P	1	1800	Α	Α	Α	Α	Α	Α	н	Α	Α	Α	
31	C1-1	DEC	81	1	S	1J, 3P	1	1300	Α	Α	Α			Α	н	Α	Α	Α	
SL	C1-2	1	1 .		5	3P	1	1050			-			Α	н		Α	Α	
53	C1-3				S	3P	1	1050						Α	н		Α	Α	
34	C1-4	V	V	V	S	3P	1	1050						Α	н		Α	Α	
35	C2	DEC	13		S	1J, 3P	1	1300	Α	Α	Α			Α	н	Α	Α	Α	
36	C3-1	DEC	81		S	3J, 3P	1	1800	Α	Α	Α	Α	А	A	н	Α	Α	Α	
52	C3-2	1	T		S	3P	1	1050						Α	н		Α	Α	
38	C3-3				S	ЗP	1	1050						Α	н		Α	Α	
39	C3-4	V		V	S	ЗP	1	1050	a.					Α	н		Α	Α	
40	C4	DEC	18		S	3J, 3P	1	1800	Α	Α	Α	A	Α	Α	Н	Α	Α	Α	
41	C5	DEC	18		S	1J, 3P	1	1300	Α	A	A			Α	Н	Α	A	Α	
42	C6-1	DEC	18		S	3J, 3P	1	1800	Α	Α	A	A	Α	Α	Н	Α	A	Α	
43	C6-2				S	3P	1	1050						Α	н		Α	Α	
44	C6-3	11			S	3P	1	1050						Α	н		Α	Α	
45	C6-4	. 4		V	S	3P	1	1050	R. Ba	1		_		Α	Н		Α	Α	(
46	C7	ik	16-11-19	13:30	S	3J, 3P	1	1800	Α	Α	Α	A	Α	Α	н	Α	A	Α	\$ TRIP 6 NOPSD
41	C8-1		15.1.19	12:30	S	1J, 3P	1	1300	Α	А	Α			А	н	Α	A	Α	

79

					Labor	atory:						ALS			2 4			Page Lof Z
Project:	Mardie F	Project: Sediment Si	ampling		Ad	dress:										3		Please sign copy on receipt of samples and
Clinit	BCI Minerals	Job No.:	18WAU-0002		Lab. Co	ontact:					Laur	en Bia	gioni					email signed copy of CoC record to O2M Project Manager.
Client:	tici minerals		160040-0002	ster /	Con	ntainer	5 .				Anal	yses =	A; Hold	I = H				
Lab Quote No.:	EP/1145/18	Turnaround Time:	Standard	atrix / W-W	4-Vial /	5	te (mL)	(OS-S	NX NX	1		-	X	8		X	g	Email laboratory analysis results to O2M Project Manager.
O2M Project		Email Address:		nple M Sludge	Type J-Jar // P-Plast Bag	Sampl	5	(EG020), EG03	H, TRH/BTEXN 18-SD, EPOSO-I EPOTI-SOI	ts (NT-4	(Prose	South L	15	N II N	8	3 g	Tion E	
Manager O2M Sample ID	Laboratory	claudio.deldeo@o	Time	San San Sul / Su-S	B-Bottle / G-Glass /	No. of Sar	Total Voli	Metals (EG020-SD, G005-SD, EG035-SI	PAH, T P1328-5 EP0	Nutries	181	Percen	夏日	No.	ă.	1	na (au	Comments
	Sample ID	15.1.19	11:30	S	1J, 3P	1	1300	A	A	A	_		A	н	A	A	A	
C9-1 C9-2		15.1.19	11130	S	3P		1050	M	~	~			A	н	~	A	A	
C9-3		127111	11.00	s	3P		1050						A	н		A	A	Reducal
C9-4				S	3P	1	1050						A	н		A	A	Defund
C10-1		16.1.19	13:00	s	1J, 3P		1300	A	A	A			A	н	A	A	A	Refuel Refuel Refuel
C10-2	DER	10.11		S	3P		1050					1	A	н		A	A	Refail
C10-3	REP	-		S	ЗP	1	1050						A	н		٨	A	reprol
C10-4	NOT.			S	3P	1	1050						A	н		٨	A	11.51
C11		16-1-19	(1:40	S	4 BJ, 3P	1	1300	A	A	A	A	A	A	н	٨	A	A	
OC1-1	18-	13.1.19	800	S	1J, 3P	1	1800	A	A	A			A	н	٨	A	A	
OC1-2	DE	FUC	. 1 /	S	ЗP	1	1050		12				A	н		A	A	
OC1-3	100	100	HC	s	3P	1	1050						A	н		A	A	
OC1-4				S	3P	1	1050						A	н		A	٨	
OC2	Dec	18		S	1J, 3P	1	1300	Α	A	Α			A	н	٨	۸	۸	
OC3	DEC 12		9:00	S	1J, P	1	1300	A	A	Α			A	н	۸	۸	۸	BIG ISOONY DAG
01	181.19	15.1-19	7:30	S	1J, 3P	1	1300	A	A	A					۸	A	٨	
02	Sov. 1		9:30	S	1J, 3P	1	1300	Α	A	A					۸	A	٨	
03		16-1119	'900	S	1J, 3P	1	1300	Α	A	Α					٨	A	٨	
									1									
			1 1 1															
					1.5.													
			1	-														
				-														
			1															
		m	-	-	1													

tef (i u	Chair	Date/Time: Date/Time: Container Sealed (Yes/No): Cont C		3P 3P 3P	1 1 1	1050 1050 1050						A	H H		A	A	
u	Sample C	Date/Time: Date/Time: Container Sealed (Yes/No):	S										н		A	A	
	Sample (Date/Time: Container Sealed (Yes/No):			1	1050							н				
		Date/Time: Container Sealed (Yes/No):										A	н	Relin	A quishe	A d By:	
		(Yes/No):											_		-	ourier:	
	Chair		_														
			us	_	IY ratory:		0	_)	Re	ec.	ALS	d	. *		1		Page 2 of 2
Mardie	Project: Sediment S	Sampling		Ad	dress	:						/	/	/			Please Note: Please sign copy on receipt of samples a email signed copy of CoC record to O2N
BCI Minerals	Job No.:	18WAU-0002	11	Lab. Co					-		en Biag		= H		_		Project Manager.
EP/1145/18	Turnaround Time:	Standard	latrix / W-Wate	/-Vial/G); EG005- (D)	(EP1328-071-SD)	805)	/		1		3)	tent	6a152	Email laboratory analysis results to O2N Project Manager.
Claudio Del Deo	Email Address: claudio.deldeo@c	o2marine.com.a	Sample N SL-Sludge A-Air	Type e / J-Jar / \ / P-Plastic	o, of Samp	al Volume	EG020-SI 5; EG035-S	SD SD	rients (NT-	IBT (EP090	ioxyacetic (EP202)	Screening (EA037)	5 (Scr) (EA	TOC (EP00)	isture Con (EA055)	(EA150H/E	
Laboratory Sample ID	Date	Time	S-Soil /		ž	1	Metal	-			Pher	-	_				Comments
0.00	10			1	1		A	A	A					Α			
	40 SRA	spub	S			-							_				
	A	1	18			11000000									- Control 12		
ICOPU.	SAL M	O SAMP		1				-									
		/	-				A	A	A	-				A			
	/		7.5									-					
	1		-		-									-			
								•									
					2				100	A	A						
								A	A					A			
							-					_					
			S	эр 1J, 3Р	1	1300						A	п		A	A	
	EP/1145/18 Claudio Del Deo Laboratory Sample ID	EP/1145/18 Turnaround Time: Claudio Del Deo Laboratory Sample ID Date	EP/1145/18 Turnaround Time: Standard Claudio Del Deo Claudio.deldeo@ Email Address: claudio.deldeo@ Zmarine.com.a Laboratory Sample ID Date Time Claudio.deldeo Time Time Claudio.deldeo Comparing Comparing Claudio.deldeo Comparing Comparing Claudio.deldeo Comparing Comparing Claudio.deldeo Comparing Comparing Comparing Comp	EP/1145/18 Turnaround Time: Standard Yurnaround Standard Claudio Del Deo Email Address: claudio.deldeo@>2marine.com.a Image: Standard Standard Laboratory Sample ID Date Time Standard MSF NO Sm& PUS Standard NSF NO Sm< Standard	BCI Minerals Job No.: 18WAU-0002 EP/1145/18 Turnaround Time: Standard Claudio Del Deo Email Address: claudio.deldeo@o2marine.com.a Jurver Laboratory Sample ID Date Time MCFF NO SMALPUS S NO SMALPUS S 3P NO S S 3P S 3P S 3P S 3P S 3P S S S 3P S S S 3P S S S S S S	BCI Minerals Job No.: 18WAU-0002 Containe EP/1145/18 Turnaround Time: Standard Market Address: claudio.deldeo@o2marine.com.a Market Address: claudio.deldeo@o2marine.com.a S 1U, 3P 1 Laboratory Sample ID Date Time S 1U, 3P 1 NOFF NO SMAR PUS S 3P 1 NOFF NO S 3P 1 S 3P 1	BCI Minerals Job No.: 18WAU-0002 Containers EP/1145/18 Turnaround Time: Standard Jive Jive Standard Jive Jive	BCI Minerals Job No.: 18WAU-0002 Containers 6009 (05 500 00) (05 50 00) (05 50 00) (05 50 00) (05 50 00) (05 50 00) (05 50 00) (05 50 00) (05 50 00) (05 50 00) (05 50 00) (05 50 00) (05 50 00) (05 50 00) (05 50 00) (05 50 00) (BCI Minerals Job No.: 18WAU-0002 Turnaround Time: Containers Containers EP/1145/18 Turnaround Time: Standard Numerals Standard Standard	BCI Minerals Job No.: 18WAU-0002 Containers Standard EP/1145/18 Turnaround Time: Standard Jury W Ju	BCH Minterals Job NO.: ISWA0-0002 Containers Standard ISWA0-0002 Anal EP/1145/18 Turnaround Time: Standard Image: Containers Image: Containers <tdi< td=""><td>BCL MultiParais Job No.: 18WA0-0002 Containers Image: Containers Analyses EP/1145/18 Turnaround Time: Standard Time: Standard Image: Containers Stop 1000000000000000000000000000000000000</td><td>BCI Minterals Job No.: ISWA0-0002 Containers Containers Analysis Analysis<</td><td>BCL Milnerals Job No.: ISWA0-0002 <thiswa0-00002< th=""> ISWA0-00002 ISWA</thiswa0-00002<></td><td>BCI Milnerals JOB NO.: ISWAU-0002 Containers Conta</td><td>Bell Millerals Job No.: IswA0-0002 Containers Cont</td><td>Bell Millerals Job No.: IsWAD-0002 Containers Cont</td></tdi<>	BCL MultiParais Job No.: 18WA0-0002 Containers Image: Containers Analyses EP/1145/18 Turnaround Time: Standard Time: Standard Image: Containers Stop 1000000000000000000000000000000000000	BCI Minterals Job No.: ISWA0-0002 Containers Containers Analysis Analysis<	BCL Milnerals Job No.: ISWA0-0002 ISWA0-0002 <thiswa0-00002< th=""> ISWA0-00002 ISWA</thiswa0-00002<>	BCI Milnerals JOB NO.: ISWAU-0002 Containers Conta	Bell Millerals Job No.: IswA0-0002 Containers Cont	Bell Millerals Job No.: IsWAD-0002 Containers Cont

1.

1	alla				s	1J, 3P	1	1300	•	٨	٨			A	-	•	•	•			
	967									A	A			A	н	A		A			
	01				S	1J, 3P		1300	A	A	Α					A	A	A		_	
	62				S	1J, 3P		1300		A	A					Α	A	A			
	RINS METZ		11 1.10		S	1J, 3P	1		Α	A	Α		_			Α	A	A		1	2.
1	KINS METZ		16.1119	16:20 9:45	V&	4B	1	500 750	AA	8 1	AA					- d			Es F		
ź	SPLIT P3		16-1-19	9:45	S	1B 3J	1	750	A	A.	A	A	A	A	4	A	A		TBS	I	LAB
	RINS VOL 2 RUNS VOL 2 FB1	TBS 520	16.1.19	16:20	N CANN &	IS	1	Sec		A		-	-								
	RINS Val 1		15-1-19	17:00	5	18	ŀ	800	A		A										
1	FBI	TB5520	6-12-18	11:20	S	13	1	250	A	A	A		-				16		OPENED	ON	2122
1																47	11				4
																			41		
			1000		1		×.	4						2							
		1				45								1.5							
			-	-							1										
																	-				
	1							1.2								-					
					-													-			
				1																	
											_										
									-		1							-	1		-
	<u>S</u>										_										
					_																
											_										
					-		-						-								
						-															
											1										

Sampled By:	Date/Time:	Relinquished By:
Received By Lab:	Date/Time:	Courier:
Received By Lab: Sample Cold (Yes/No):	Sample Container Sealed (Yes/No):	

Chain of Custody (CoC) Record

				20.00	Labor	atory:	1				1.000	ALS			4	1	1	Please Note:
Project:	Mardie F	Project: Sediment S	ampling		Ad	dress:												Please sign copy on receipt of samples and email signed copy of CoC record to O2M
Client	BCI Minerals	Job No.:	18WAU-0002		Lab. Co	ntact:					Laur	en Bia	gioni					Project Manager.
Caterry	uçi minierais	J00 N0	10WA0-0002		Con	taine	rs				Ana	lyse =	A; Hole	H = b				
Lab Quote No.:	EP/1145/18	Turnaround Time:	Standard	ter / A.Alt	lass / P.			; EG035-	; EP080-			120	1/15			50		Email laboratory analysis results to O2M Project Manager.
O2M Project Manager	Claudio Del Deo	Email Address: claudio.deldeo@c	* 2marine.com.a	le Matrix e / W-Wa	ae Vial / G-G : Bag	amples	ime (mL)	EG005-SD	P1328-SD 71-SD)	(NT-8AS)	(060¢	acids (EP2	Test (EAD	(EA025)	(E004	new (CAU)	Pol Earlies	
O2M Sample ID	Laboratory Sample ID	Date	Time	S-Soil / St-Sludge /	Type B-Bottle / J-Jar / V-Vial / G-Glass / P- Plastic Bag	No. of Samples	Total Volume (mL)	Metals (EG020-SD; EG005-SD; EG035 SD)	PAH, TRH/BTEXN (EP1328-SD; EP080- SD; EP071-SD)	Nutrients (NT-8AS)	TBT (EP090)	Phenoxyacetic acids (EP202)	ASS Screening Test (EA037)	A55 (Scr) (EA026)	TOC (EP003)	Moisure Cont	PSD [5415]	Comments
SPUT-P1		12/12/18	11:20	S	3J, 🌮	1	1800	A	A	A	A	A	A	н	A	A	A	All soil samples are marine sediment
SPLIT-P2		15/1/19		S	49 3P	1	1300	A	A	A			A	н	A	A	A	PSD ONLY I LAB
V TRUPA		15/2/18	09:30	S	3J, 2 P	1	1800	A	A	A	A	A	A	н	A	A	A	
TRIP-2		Judia		S	3J, 3P	1	1800	A	A	A	A	A	A	н	A	A	A	
TRUP-3				S	3J, 3P	1	1800	A	A	A	A	A	A	н	A	A	A	
TRUE-4				s	3J, 3P	1	1800	A	A	A	A	A	Α	н	A	A	A	
TRIP-5				s	1J, 3P	1	1800	A	A	A			А	н	A	A	A	
TRIP-6				S	1J, 3P	1	1800	A	A	A			Α	н	A	A	A	
RINSB				s	18	1	500	A	A	A								A State of the second sec
TRUPR				s	18	1	500	A	A	A								
TIELDO				s	1J	1	250	A	A	A								
TB1-1				S	3J, 3P	1	1800	A	A	A	A	A	A	н	А	A	A	
T01-2			- ton	S	3P	1	1050		18	-			A	н		A	A	
TR3-3				S	ЗР	1	1050		1				A	н		A	A	
TR1-4				S	ЗР	1	1050		1.0				A	н		A	A	
YAY YAY		12/12/18	1150	S	3J, 3P	1	1800	A	A	Α	A	A	A	н	Α	A	A	
V 183		12/12/18	12:30	S	1), 3P	1	-1300	A	A	A	1	1	A	н	A	A	A	
T04-1				S.	1J, 3P	1	1300	A	А	A			A	н	A	A	A	
TBA-2				S	3P	1	1050						A	н	A	A	A	
T84-3				S	3P	1	1050						A	н	A	A	A	
TB4-4				S.	3P	1	1050						A	н	А	A	A	and the second

- AF

DATE TIME

San	d By Lab: nple Cold (Yes/No):			Sample	Date/Tim Container Seale (Yes/No	d									1			C	ourier	:
C8-4 San	npled By:				Date/Tim	S B:	3P	1	1050				1		A	n	Relin	A nquish	A ed By:	
C8-3		1			1	S	3P	1	1050		1				A	H H	222	A	A	
C8-2	2	1.0		-		S	3P	1	1050				2.5		A	н		A	A	
C8-1			1			S	1J, 3P	1	1300	A	A	A	1		A	н	A	A	A	
C7					No all	S	3J, 3P	1	1800	A	A	A	A	A	A	н	A	A	A	
CEL	MA			201	-	S	3P	1	1050			-			A	н		A	Α	
667 667 667	N/A N/A				A SARA	S	3P	1	1050						A	н		A	A	
467	A M/A	1				S	3P	1	1050		1		22.	15	A	н		A	A	
C6-1			12/	12/18	11:20	S	3J, 3P	1	1800	Α	Α	A	A	A	A	н	A	A	A	
C5			121	12/13	11:00	S	1J, 3P	1	1300	A	A	A			Α	н	Α	A	A	
C4			12	12/18	10:00		3J, 3P	1	1800	А	Α	A	A	A	Α	н	А	A	A	
Van	NIF	7	-			s	3P	1	1050				112		A	н		A	A	
1 233	/	A	-	ierro		- s	3P	1	1050			30	-		A	н		A	A	10-00
V C3-2	V	-	121	12/18	10:00	S	7	1	1050						A	н		A	A	only 2 hope
C2		,		12/13	10:00	S	3J, 3P	1	1800	A	A	A	A	A	A	н	A	A	A	Refisal Im
CHA V	· /	-		That	090		1J, P	1	1300	A	A	A			A	н	A	A		Dalie Dalie
C1-3		-	121	IR/18		S	3P 3P	1	1050 1050	À		2			A	H		A	A	
-C1-2		-				S	3P	1	1050		132	2.			A	H		A	A	
C1-1		-	12/1	2/18	08:00	S	1J, 3P	1	1300	A	A	A			A	H	A	A	A	
TB10)	-	c.l	-	0.010	S	3J, 3P	1	1800	A	A	A	A	A	A	н	A	A	٨	
TB9-4	4					S	3P	1	1050						A	н		A	۸	
TB9-:	3					S	ЗP	1	1050						٨	н		٨	٨	
TB9-3	2					S	ЗP	1	1050						A	н		٨	٨	
тв9-:	1					S	1J, 3P	1	1300	A	Α	۸			٨	н	٨	A	٨	
TBS						s	3J, 3P	1	1800	A	A	A	A	Α	۸	н	A	A	Α	
187						S	1J, 3P	1	1300	٨	A	A			۸	н	A	A	A	
785					1. 1. 1.	S	3J, 3P	1	1800	A	A	A	۸	A	A	н	A	A	A	

Chain of Custody (CoC) Record

Appendix B Laboratory Results

Table 1 - SAP and 95% UCL Results versus NAGD Screening Levels

				Location ID	RF1	RF2	RF3	RF4	RF5	RF6	191-1	TB4-1	TB5	TB6	TB7	TB8	TB10		C8-1	C9-1	C9-2	C10-1	C11	0C1-1	01	0
Analytical Group	Analyte	Units	LoR	NAGD (ISQG																						\square
Organics	Total Organic Carbon	%	0	Trigger Value) -		0.27	0.23				0.22	0.15	0.28	0.15	0.21	0.22	0.26	0.08	0.1	0.18		0.11	0.22	0.15	0.12	0
	Aluminium	mg/kg	50	-		7840	7230				13200	17800	10400	9350	9520	10500	8790	6980	9120	9330		8960	8330	17200	14800	1
	Antimony	mg/kg	0.5	2		<0.50	<0.50				<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	< 0.50	<
	Arsenic	mg/kg	1	20		23.8	26.2				16.6	11	17.2	16.8	17	17.4	15.6	29	24.1	18.2		16.3	17	14.2	10.4	
	Cadmium	mg/kg	0.1	1.5		0.1	0.1				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1	
	Chromium	mg/kg	1	80		31.2	30.1				50.5	68.7	42.9	39.8	40.3	43.4	37.8	32	44.3	39		36.1	36.3	62.9	56.8	
	Cobalt	mg/kg	0.5	-		8.3	8.2				12.2	13.8	10.6	10.3	10.5	11.2	10	10.2	13	10.8		9.3	10.3	19.2	12.2	
	Copper	mg/kg	1	65		8.2	7.5				19.1	41.1	13.6	11.6	12.5	13.5	11.8	8	11.4	11.4		11	10.7	32.1	22.4	
Metals	Iron	mg/kg	1	-		36000	34900				48200	65800	38,900	38300	38200	41900	35200	33400	42600	36600		33100	33800	58400	54900	4
	Manganese	mg/kg	10	-		291	281				299	227	266	252	264	277	258	314	264	266		242	270	368	218	
	Mercury	mg/kg	0.01	0.15		<0.01	<0.01				<0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01		< 0.01	< 0.01	< 0.01	< 0.01	<
	Nickel	mg/kg	1	21		14.1	13.2				24.5	35.5	20.7	19.5	20	21.8	18.2	16.3	22.3	18.7		17.1	17.6	33.8	31	
	Silver	mg/kg	0.1	1.0		<0.1	<0.1				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1	
	Vanadium	mg/kg	2	-		44.7	44.0				67.9	95.1	56.6	56.1	54.7	59.7	50.4	54.7	65.3	51		46	47.6	79.3	81.6	
	Zinc	mg/kg	1	200		16.7	15.6				31.4	44.9	26.4	24.8	24.6	26.8	23.6	20.2	26.9	23.6		21.8	22.4	38.8	36.6	
	TRH C6 - C10	mg/kg	3	550		<3	<3				<3	<3	<3	<3	<3	<3	<3	<3	<3	<3		<3	<3	<3	<3	\top
	C6 - C10 Fraction minus BTEX (F1)	mg/kg	3	550		<3.0	<3.0				<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0		<3.0	<3.0	<3.0	<3.0	+
	TRH >C10 - C16	mg/kg	3	550		<3	<3				<3	<3	<3	<3	<3	<3	<3	<3	<3	<3		<3	<3	<3	<3	_
TRH	TRH >C16 - C34	mg/kg	3	550		<3	<3				<3	<3	<3	3	7	<3	7	<3	5	14		<3	6	<3	<3	
	TRH >C34 - C40	mg/kg	5	550		<5	<5				<5	<5	<5	<5	<5	<5	<5	<5	<5	9		<5	<5	<5	<5	+
	TRH >C10 - C40 Fraction (sum)	mg/kg	3	550		<3	<3				<3	<3	<3	3	7	<3	7	<3	5	4		<3	6	<3	<3	+
	TRH >C10 - C16 Fraction minus Naphthalene (F2)	mg/kg	3	550		<3	<3				<3	<3	<3	<3	<3	<3	<3	<3	<3	<3		<3	<3	<3	<3	+
	C6 - C9 Fraction	mg/kg	3	550		<3	<3				<3	<3	<3	<3	<3	<3	<3	<3	<3	<3		<3	<3	<3	<3	+
	C10 - C14 Fraction	mg/kg	3	550		<3	<3				<3	<3	<3	<3	<3	<3	<3	<3	<3	<3		<3	<3	<3	<3	
ТРН	C15 - C28 Fraction	mg/kg	3	550		<3	<3				<3	<3	<3	<3	4	<3	3	<3	<3	4		<3	4	<3	<3	
	C29 - C36 Fraction	mg/kg	5	550		<5	<5				<5	<5	<5	<5	<5	<5	<5	<5	<5	12		<5	<5	<5	<5	
	C10 - C36 Fraction (sum)	mg/kg	3	550		<3	<3				<3	<3	<3	<3	4	<3	3	<3	<3	16		<3	4	<3	<3	
	Benzene	mg/kg	0.2	-		<0.2	<0.2				<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2	<0.2	
	Toluene	mg/kg	0.2	-		<0.2	<0.2				<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2	<0.2	
	Ethylbenzene	mg/kg	0.2	-		<0.2	<0.2				<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2	<0.2	۰.
	m+p-xylene	mg/kg	0.2	-		<0.2	<0.2				<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2		<0.2	<0.2	<0.2	<0.2	
BTEXN	o-xylene	mg/kg	0.2	-		<0.2	<0.2				<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2	<0.2	
	Total Xylenes	mg/kg	0.5	-		<0.5	<0.5				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	
	Sum of BTEX	mg/kg	0.2	-		<0.2	<0.2				<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2	<0.2	
	Naphthalene	μg/kg	5	-		<0.2	<0.2				<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2	<0.2	
	2-Methylnaphthalene	μg/kg	5	-		<5	<5				<5	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	<5	<5	<5	+
	Acenaphthene	μg/kg	4	-		<4	<4				<4	<4	<4	<4	<4	<4	<4	<4	<4	<4		<4	<4	<4	<4	
	Acenaphthylene	μg/kg	4	-		<4	<4				<4	<4	<4	<4	<4	<4	<4	<4	<4	<4		<4	<4	<4	<4	
	Anthracene	μg/kg	4	-		<4	<4				<4	<4	<4	<4	<4	<4	<4	<4	<4	<4		<4	<4	<4	<4	1
	Benzo(a)anthracene	μg/kg	4	-		<4	<4				<4	<4	<4	<4	<4	<4	<4	<4	<4	<4		<4	<4	<4	<4	
	Benzo(a)pyrene	μg/kg	4	-		<4	<4				<4	<4	<4	<4	<4	<4	<4	<4	<4	<4		<4	<4	<4	<4	
	Benzo(b+i)fluoranthene	μg/kg	4	-		<4	<4				<4	<4	<4	<4	<4	<4	<4	<4	<4	<4		<4	<4	<4	<4	+
	Benzo(k)fluoranthene	μg/kg	4	-		<4	<4				<4	<4	<4	<4	<4	<4	<4	<4	<4	<4		<4	<4	<4	<4	
	Benzo(e)pyrene	μg/kg	4	-		<4	<4				<4	<4	<4	<4	<4	<4	<4	<4	<4	<4		<4	<4	<4	<4	+
	Benzo(g,h,i)perylene	μg/kg	4	-		<4	<4				<4	<4	<4	<4	<4	<4	<4	<4	<4	<4		<4	<4	<4	<4	+
OC/OP Pesticides		μg/kg	4	-		<4	<4				<4	<4	<4	<4	<4	<4	<4	<4	<4	<4		<4	<4	<4	<4	+
	Coronene	μg/kg	5	-		<5	<5				<5	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	<5	<5	<5	+
	Dibenzo(a,h)anthracene	μg/kg	4	_		<4	<4				<4	<4	<4	<4	<4	<4	<4	<4	<4	<4		<4	<4	<4	<4	+
	Fluoranthene	μg/kg	4	-		<4	<4				<4	<4	<4	<4	<4	<4	<4	<4	<4	<4		<4	<4	<4	<4	+
	Fluorene	μg/kg	4	<u> </u>		<4	<4				<4	<4	<4	<4	<4	<4	<4	<4	<4	<4		<4	<4	<4	<4	+
	Indeno(1,2,3-c,d)pyrene	μg/kg	5	_		<4	<4				<4	<4	<4	<4	<4	<4	<4	<4	<4	<4		<4	<4	<4	<4	+
	Naphthalene (PAH)	μg/kg	5.0			<5	<5				<4	<4	<4	<4	<4	<4	<4	<4	<4	<4		<4	<4	<4	<4	+
	Perylene	μg/kg μg/kg	<u> </u>	-		<5	<5				<4	<4	<4	<4	<4	<4	<4	<4	<4	<4		<4	<4	<4	<4	+
		1				<4	<4				<4	<4	<4	<4	<4	<4	<4	<4	<4	<4		<4	<4	<4	<4	+
	Phenanthrene Purcence	μg/kg	4	-																						_
	Pyrene Sum of DAllo	μg/kg	4	-		<4	<4				<4	<4	<4	<4	<4	<4	<4	<4	<4	<4		<4	<4	<4	<4	_
Organatin	Sum of PAHs	µg/kg	4	10000		<4	<4				<4	<4	<4	<4	<4	<4	<4	<4	<4	<4		<4	<4	<4	<4	_
Organotin Surrogate	Tripropyltin	%	0.5			114	139				82.2		75.4	72.2		75.2	86	82.9					51.9			

BCI MINERALS

Table 1 - SAP and 95% UCL Results versus NAGD Screening Levels

Tuble 1 SAF and 5.	5% UCL Results versus NAGD Screening Levels			Location ID	RF1	RF2	RF3	RF4	RF5	RF6	TB1-1	TB4-1	TB5	TB6	TB7	TB8	TB10	C7	C8-1	C9-1	C9-2	C10-1	C11	0C1-1	01	02
							<u> </u>	<u> </u>		<u> </u>												<u> </u>	'	<u> </u>	<u> </u>	<u> </u>
Analytical Group	Analyte	Units	LoR	NAGD (ISQG Trigger Value)																		'			'	
	Monobutyltin as Sn	μg/kg	1	-		<1	<1																			
Organotins	Dibutyltin as Sn	μg/kg	1	-		<1	<1																			
	Tributyltin as Sn	μg/kg	0.5	9		<0.5	<0.5				<0.5		<0.5	<0.5		<0.5	<0.5	<0.5					<0.5			
· ·	Moisture	%	1	-		32	25.2				33.3	30.4	37	23.5	35.4	35.3	35.4	27.2	28.5	30.5	23.9	29.5	35.2	25.8	21.1	36
	75.0 mm	% passing	1	-	<1	<1	1	<1	<1	<1																
	37.5 mm	% passing	1	-	<1	<1	<1	<1	<1	<1																
	19.0 mm	% passing	1	-	<1	<1	<1	<1	<1	<1													'			
	9.5 mm	% passing	1	-	<1	<1	<1	<1	<1	<1																
	4.75 mm	% passing	1	-	<1	5	6	5	15	8																
	2.36 mm	% passing	1	-	3	13	12	22	37	16																
	1.18 mm	% passing	1	-	8	26	24	52	63	25																
	0.600 mm	% passing	1	-	15	39	38	76	84	32																
	0.425 mm	% passing	1	-	18	44	45	82	88	37																
	0.300 mm	% passing	1	-	26	48	52	85	91	42																
	0.150 mm	% passing	1	-	52	55	65	88	93	55																
	0.075 mm	% passing	1	-	68	60	73	91	94	61																
	Clay (<2 μm)	%	1	-	9	14	10	3	3	16																
		%	1	-	14	20	13	5	2	17																
	Sand (0.06-2.00 mm)	%	1	-	72	49.0	62.0	60	50	49																
	Gravel (>2mm) Cobbles (>6cm)	%	1		5 <1	17.0 <1	15.0	32 <1	45 <1	18 <1																
Soil Particle		70	1	-	<1	<1	<1			<1																
Density	Soil Particle Density (Clay/Silt/Sand)	g/cm3	0.01	-	2.75	2.72	2.7	2.73	2.72	2.73																
	Ammonia as N	mg/kg	20	-		<20	<20				<20	<20	<20	<20	<20	<20	<20	<20	<20	<20		<20	<20	<20	<20	<20
	Nitrite as N (Sol.)	mg/kg	0.1	-		<0.1	<0.1				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1
	Nitrate as N (Sol.)	mg/kg	0.1	-		0.1	<0.1				<0.1	<0.1	<0.1	0.2	0.1	0.1	0.1	0.1	0.6	0.1		0.1	0.1	<0.1	<0.1	<0.1
Nutrients	Nitrite + Nitrate as N (Sol.)	mg/kg	0.1	-		0.1	<0.1				<0.1	<0.1	<0.1	0.2	0.1	0.1	0.1	0.1	0.6	0.1		0.1	0.1	< 0.1	<0.1	<0.1
	Total Kjeldahl Nitrogen as N	mg/kg	20 20	-		380	380 380				330 330	160	400	330 330	360 360	330 330	320 320	110 110	170 170	360		350 350	430 430	180	200 200	500
	Total Nitrogen as N Total Phosphorus as P	mg/kg mg/kg	20	-		380 466	430				288	160 211	314	270	282	221	180	349	341	360 342		269	275	180 274	179	500 321
	Reactive Phosphorus as P	mg/kg	0.1			<0.1	<0.1				0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1		0.1	0.1	0.6	<0.1	<0.1
	4-Chlorophenoxy acetic acid	mg/kg	0.02	-		<0.02	<0.02				< 0.02		<0.02	<0.02		<0.02	< 0.02	<0.02					< 0.02			
	2.4-DB	mg/kg	0.02	-		<0.02	<0.02				< 0.02		<0.02	<0.02		<0.02	<0.02	<0.02					< 0.02			
	Dicamba	mg/kg	0.02	-		<0.02	<0.02				<0.02		<0.02	<0.02		<0.02	<0.02	<0.02					< 0.02			
	Mecoprop	mg/kg	0.02	-		<0.02	<0.02				<0.02		<0.02	<0.02		<0.02	<0.02	<0.02					<0.02			
	МСРА	mg/kg	0.02	-		<0.02	<0.02				<0.02		<0.02	<0.02		<0.02	<0.02	<0.02					<0.02			
	2.4-DP	mg/kg	0.02	-		<0.02	<0.02				<0.02		<0.02	<0.02		<0.02	<0.02	<0.02					<0.02			
Phenoxyacetic	2.4-D	mg/kg	0.02	-		<0.02	<0.02				<0.02		<0.02	<0.02		<0.02	<0.02	<0.02					<0.02			
Acid Herbicides by LCMS	Triclopyr	mg/kg	0.02	-		<0.02	<0.02				<0.02		<0.02	<0.02		<0.02	<0.02	<0.02					< 0.02			
	2.4.5-TP (Silvex)	mg/kg	0.02	-		<0.02	<0.02				<0.02		<0.02	<0.02		<0.02	<0.02	<0.02					<0.02			
	2.4.5-T	mg/kg	0.02	-		<0.02	<0.02				<0.02		<0.02	<0.02		<0.02	<0.02	<0.02					<0.02			
	МСРВ	mg/kg	0.02	-		<0.02	<0.02				<0.02		<0.02	<0.02		<0.02	<0.02	<0.02					<0.02			
	Picloram	mg/kg	0.02	-		<0.02	<0.02				<0.02		<0.02	<0.02		<0.02	<0.02	<0.02					<0.02			
	Clopyralid	mg/kg	0.02	-		<0.02	<0.02				<0.02		<0.02	<0.02		<0.02	<0.02	<0.02					<0.02			
	Fluroxypyr	mg/kg	0.02	-		<0.02	<0.02				<0.02		<0.02	<0.02		<0.02	<0.02	<0.02					<0.02			
TPH(V)/BTEX	1.2-Dichloroethane-D4	%	0.2	-		119	128				106	112	93.1	100	93.6	86.6	92.4	98.2	102	120		129	105	106	124	90.2
Surrogates	Toluene-D8	%	0.2	-		81.8	92.4				85.2	117	79.2	100	94.5	73.1	92.3	80	89.6	97.7		98	99.5	110	112	95.1
-	4-Bromofluorobenzene	%	0.2			82.2	75.4				88.7	114	81.6	96.9	92.2	73.2	84.5	79.8	86.8	96		97.2	91.7	99	106	89.7
	2-Fluorobiphenyl	%	10	-		96.5	112				93	108	86	85.6	80.7	73.4	79.3	75.3	79.8	77.8		76.4	79.8	76.5	89.9	79.6
Extractable	Anthracene-d10	%	10	-		81	80				89	101	88.5	95.2	84.2	91.6	90.6	95.9	81.2	94.6		104	93.5	81.2	80.8	84.4
	4-Terphenyl-d14	%	10			80.5	88.8				99.6	97.9	94.2	78.3	90.2	103	94.8	102	108	94.1		100	103	82.8	95.1	91.2
Phenoxyacetic Acid Herbicide Surrogate	2.4-Dichlorophenyl Acetic Acid	%	0.02	-		72.7	66.9				48.8		49.9	46.4		56.3	60.2	50.1					54.7			
Surrogate		pH Unit	0.1	8.4		8	8.2				9.3	8.5	8.4	8.3	8.6	8.6	8.9	8.5	8.8	8.8	8.9	8.2	8.7			
Ass Field	рН (F)		0.1	0.4				-	· · · · · · · · · · · · · · · · · · ·					-		1										
Ass Field	рН (F) рН (Fox)	pH Unit	0.1	7.7		7	7.3				8.6	7.7	7.8	7.8	8.1	7	7.5	7.9	7.8	8	8.1	7.9	7.6			

BCI MINERALS

Mardie Minerals Pty Ltd Mardie Sediment Sampling and Analysis Plan

Table 1 - SAP and 95% UCL Results versus NAGD Screening Levels

SAP Implementation Report Appendix B

				Location ID	03	TB2	TB3	C1-1	C2	C3-1	C3_2	C4	C5	C6-1	OC2	OC3	95% U
Analytical Group	Analyte	Units	LoR	NAGD (ISQG Trigger Value)													
Organics	Total Organic Carbon	%	0	-	0.16	0.34	0.42	0.09	0.08	0.12		0.15	0.19	0.2	0.21	0.24	0.21
	Aluminium	mg/kg	50	-	6610	11600	8240	7030	9940	6410		5690	6090	5150	7530	8750	10,392
	Antimony	mg/kg	0.5	2	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	0.25
	Arsenic	mg/kg	1	20	22.7	21	14.7	35.8	30.6	53.8		41.9	48.6	31.4	17.3	20.9	26.5
	Cadmium	mg/kg	0.1	1.5	<0.1	<0.1	<0.1	0.2	0.1	0.3		0.3	0.2	0.1	0.2	<0.1	0.1
	Chromium	mg/kg	1	80	28.3	44.7	31.9	29.5	45.3	24.8		22.2	23.4	21.1	31.4	36.5	42.0
	Cobalt	mg/kg	0.5	-	8.9	12	8.6	8.7	10.2	8.1		7.1	7.2	6.6	9.6	9.3	11.0
Metals	Copper	mg/kg	1	65	8.1	13.5	9.8	8.3	10.6	7.5		6.9	7.4	6	9.5	10.6	15.2
Ivietais	Iron	mg/kg	1	-	29400	44700	33100	33600	39800	36000		30500	34000	27000	37600	37100	41,84
	Manganese	mg/kg	10	-	294	478	224	449	445	583		661	443	373	276	316	362.
	Mercury	mg/kg	0.01	0.15	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		< 0.01	<0.01	<0.01	<0.01	< 0.01	0.0
	Nickel	mg/kg	1	21	14.8	22.4	16.1	14.1	22.3	12		10	11.6	10	15.2	17.1	21.0
	Silver	mg/kg	0.1	1.0	<0.1	0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	0.0
	Vanadium	mg/kg	2	-	48.2	59.8	42.7	52.4	58.4	52.5		43.3	46.5	39.4	46.8	49	59.5
	Zinc	mg/kg	1	200	18.4	29	20.9	17.9	22.6	13.9		12.6	13.6	12.5	19	20.5	25.8
	TRH C6 - C10	mg/kg	3	550	<3	<3	<3	<3	<3	<3		<3	<3	<3	<3	<3	1.5
	C6 - C10 Fraction minus BTEX (F1)	mg/kg	3	550	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0		<3.0	<3.0	<3.0	<3.0	<3.0	1.5
	TRH >C10 - C16	mg/kg	3	550	<3	<3	<3	<3	<3	<3		<3	<3	<3	<3	<3	1.5
TRH	TRH >C16 - C34	mg/kg	3	550	6	<3	<3	<3	<3	<3		<3	<3	<3	<3	<3	3.7
	TRH >C34 - C40	mg/kg	5	550	<5	<5	<5	<5	<5	<5		<5	<5	<5	<5	<5	3.1
	TRH >C10 - C40 Fraction (sum)	mg/kg	3	550	6	<3	<3	<3	<3	<3		<3	<3	<3	<3	<3	3.0
	TRH >C10 - C16 Fraction minus Naphthalene (F2)	mg/kg	3	550	<3	<3	<3	<3	<3	<3		<3	<3	<3	<3	<3	1.5
	C6 - C9 Fraction	mg/kg	3	550	<3	<3	<3	<3	<3	<3		<3	<3	<3	<3	<3	1.5
	C10 - C14 Fraction	mg/kg	3	550	<3	<3	<3	<3	<3	<3		<4	<3	<3	<3	<3	1.5
ТРН	C15 - C28 Fraction	mg/kg	3	550	4	<3	<3	<3	<3	<3		<3	<3	<3	<3	<3	2.2
	C29 - C36 Fraction	mg/kg	5	550	<5	<5	<5	<5	<5	<5		<5	<5	<5	<5	<5	3.4
	C10 - C36 Fraction (sum)	mg/kg	3	550	4	<3	<3	<3	<3	<3		<4	<3	<3	<3	<3	3.2
	Benzene	mg/kg	0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2	<0.2	<0.2	0.1
	Toluene	mg/kg	0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2	<0.2	<0.2	0.1
	Ethylbenzene	mg/kg	0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2	<0.2	<0.2	0.1
	m+p-xylene	mg/kg	0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2	<0.2	<0.2	0.1
BTEXN	o-xylene	mg/kg	0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2	<0.2	<0.2	0.1
	Total Xylenes	mg/kg	0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	0.2
	Sum of BTEX	mg/kg	0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2	<0.2	<0.2	0.1
	Naphthalene	μg/kg	5	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	< 0.2	<0.2	<0.2	<0.2	2.5
	2-Methylnaphthalene	μg/kg	5	-	<5	<5	<5	<5	<5	<5		<5	<5	<5	<5	<5	2.5
	Acenaphthene	μg/kg	4	-	<4	<5	<4	<4	<4	<4		<4	<4	<4	<4	<4	2.0
	Acenaphthylene	μg/kg	4	-	<4	<5	<4	<4	<4	<4		<4	<4	<4	<4	<4	2.0
	Anthracene	μg/kg	4	_	<4	<5	<4	<4	<4	<4		<4	<4	<4	<4	<4	2.0
	Benzo(a)anthracene	μg/kg	4	-	<4	<5	<4	<4	<4	<4		<4	<4	<4	<4	<4	2.0
	Benzo(a)pyrene	μg/kg	4	-	<4	<5	<4	<4	<4	<4		<4	<4	<4	<4	<4	2.0
	Benzo(b+j)fluoranthene	μg/kg	4	-	<4	<5	<4	<4	<4	<4		<4	<4	<4	<4	<4	2.0
	Benzo(k)fluoranthene	μg/kg	4	-	<4	<5	<4	<4	<4	<4		<4	<4	<4	<4	<4	2.0
	Benzo(e)pyrene	μg/kg	4	-	<4	<5	<4	<4	<4	<4		<4	<4	<4	<4	<4	2.0
	Benzo(g,h,i)perylene	μg/kg	4	-	<4	<5	<4	<4	<4	<4		<4	<4	<4	<4	<4	2.0
OC/OP Pesticides		μg/kg	4	-	<4	<5	<4	<4	<4	<4		<4	<4	<4	<4	<4	2.0
	Coronene	μg/kg	5	-	<5	<5	<5	<5	<5	<5		<5	<5	<5	<5	<5	2.5
	Dibenzo(a,h)anthracene	μg/kg	4	_	<4	<5	<4	<4	<4	<4		<4	<4	<4	<4	<4	2.0
	Fluoranthene	μg/kg	4		<4	<5	<4	<4	<4	<4		<4	<4	<4	<4	<4	2.0
	Fluorene	μg/kg	4		<4	<5	<4	<4	<4	<4		<4	<4	<4	<4	<4	2.0
	Indeno(1,2,3-c,d)pyrene	1	5	<u> </u>	<4	<5	<4	<4	<4	<4		<4	<4	<4	<4	<4	2.0
	Naphthalene (PAH)	μg/kg	5.0		<4	<5	<4	<4	<4	<4			<4	<4	<4	<4	2.5
		μg/kg		-								<5					-
	Perylene	μg/kg	4	-	<4	<5	<4	<4	<4	<4		<4	<4	<4	<4	<4	2.0
	Phenanthrene	μg/kg	4	-	<4	<5	<4	<4	<4	<4		<4	<4	<4	<4	<4	2.0
	Pyrene	μg/kg	4	-	<4	<5	<4	<4	<4	<4		<4	<4	<4	<4	<4	2.0
Organotin	Sum of PAHs	µg/kg	4	10000	<4	<5	<4	<4	<4	<4		<4	<4	<4	<4	<4	2.0
urganotin	Tripropyltin	1	0.5			89.2							1	85.5	1	1	97.1

Table 1 - SAP and 95% UCL Results versus NAGD Screening Levels

	5% UCL Results versus NAGD Screening Levels			Location ID	03	TB2	TB3	C1-1	C2	C3-1	C3_2	C4	C5	C6-1	OC2	OC3	95% UC
Analytical Group	Analyte	Units	LoR	NAGD (ISQG Trigger Value)													
	Monobutyltin as Sn	μg/kg	1	-		<1				<1		<1		<1			0.50
Organotins	Dibutyltin as Sn	μg/kg	1	-		<1				<1		<1		<1			0.50
-	Tributyltin as Sn	μg/kg	0.5	9		<0.5				< 0.5		<0.5		<0.5			0.25
	Moisture	%	1	-	28.8	50.3	40.4	14.2	18.8	17.6	13.8	22.4	26.5	32.4	34.9	33.3	31.73
•	75.0 mm	% passing	1	-		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	0.58
	37.5 mm	% passing	1	_		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	0.50
	19.0 mm	% passing	1			<1	<1	11	6	<1	<1	<1	<1	<1	<1	<1	2.59
	9.5 mm	% passing	1			<1	<1	26	28	21	15	17	21	2	11	<1	12.83
			1	-		<1	5	48	40	39	34	42	37	7	11	12	25.83
		% passing		-			6			<u> </u>							
	2.36 mm	% passing	1	-		<1	-	56	48	53	45	58	52	15	25	22	36.62
	1.18 mm	% passing	1	-		<1	6	67	58	67	59	73	69	30	35	36	50.95
	0.600 mm	% passing	1	-		<1	6	76	67	82	74	84	80	51	44	50	64.32
	0.425 mm	% passing	1	-		1	7	80	72	89	82	86	83	60	49	58	69.57
	0.300 mm	% passing	1	-		2	8	85	78	93	90	88	85	68	55	66	74.46
	0.150 mm	% passing	1	-		6	14	92	90	95	95	90	87	75	67	79	81.60
	0.075 mm	% passing	1	-		47	55	95	94	97	97	94	91	87	76	86	87.14
	Clay (<2 μm)	%	1	-		13	12	3	3	3	2	3	4	3	8	3	8.54
	Silt (2-60 μm)	%	1	-		17	14	<1	1	<1	<1	2	2	6	12	7	10.67
based on particle	Sand (0.06-2.00 mm)	%	1	-		70	68	38	45	40	49	32	37	71	52	64	58.69
size	Gravel (>2mm)	%	1	-		<1	6	59	51	57	49	63	57	20	28	26	40.87
	Cobbles (>6cm)	%	1	-		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	0.50
Soil Particle Density	Soil Particle Density (Clay/Silt/Sand)	g/cm3	0.01	-		2.62	2.6	2.68	2.68	2.71	2.68	2.67	2.64	2.63	2.6	2.64	2.70
	Ammonia as N	mg/kg	20	-	<20	<20	<20	<20	<20	<20		<20	<20	<20	<20	<20	10.00
	Nitrite as N (Sol.)	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1	0.2	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	0.06
	Nitrate as N (Sol.)	mg/kg	0.1	-	0.3	0.2	0.2	0.2	0.4	< 0.1		0.2	0.1	0.1	0.3	0.2	0.19
Nuturianta	Nitrite + Nitrate as N (Sol.)	mg/kg	0.1	-	0.3	0.2	0.2	0.2	0.6	< 0.1		0.2	0.1	0.1	0.3	0.2	0.20
Nutrients	Total Kjeldahl Nitrogen as N	mg/kg	20	-	330	490	370	180	290	160		190	280	330	480	440	349.95
	Total Nitrogen as N	mg/kg	20	-	330	490	370	180	290	160		190	280	330	480	440	349.95
	Total Phosphorus as P	mg/kg	2	-	309	348	245	342	415	400		468	422	358	252	338	343.16
	Reactive Phosphorus as P	mg/kg	0.1	-	<0.1	0.2	0.2	<0.1	0.1	< 0.1		<0.1	0.2	0.1	0.2	0.2	0.15
	4-Chlorophenoxy acetic acid	mg/kg	0.02	-		<0.02				<0.02		<0.02		< 0.02			0.01
	2.4-DB	mg/kg	0.02	-		<0.02				<0.02		<0.02		<0.02			0.01
	Dicamba	mg/kg	0.02	-		<0.02				<0.02		<0.02		<0.02			0.01
	Mecoprop	mg/kg	0.02	-		<0.02				<0.02		<0.02		<0.02			0.01
	МСРА	mg/kg	0.02	-		<0.02				<0.02		<0.02		<0.02			0.01
	2.4-DP	mg/kg	0.02	-		<0.02				< 0.02		< 0.02		< 0.02			0.01
Phenoxyacetic	2.4-D	mg/kg	0.02	-		<0.02				<0.02		<0.02		<0.02			0.01
Acid Herbicides by	Triclopyr	mg/kg	0.02	-		< 0.02				< 0.02		< 0.02		< 0.02			0.01
LUIVIS	2.4.5-TP (Silvex)	mg/kg	0.02	-		< 0.02				< 0.02		< 0.02		< 0.02			0.01
	2.4.5-T	mg/kg	0.02	-		<0.02				<0.02		<0.02		<0.02			0.01
	МСРВ	mg/kg	0.02	-		<0.02				<0.02		<0.02		<0.02			0.01
	Picloram	mg/kg	0.02	<u> </u>		<0.02				<0.02		< 0.02		<0.02			0.01
			0.02			< 0.02				<0.02		< 0.02		< 0.02			0.01
	Clopyralid	mg/kg								<u> </u>							
	Fluroxypyr	mg/kg	0.02	-		<0.02				< 0.02		<0.02		< 0.02			0.01
TPH/\/\/RTFX	1.2-Dichloroethane-D4	%	0.2	-	114	75.6	72.4	94.1	82.7	87		84.4	98.7	106	80.8	96	104.73
Surrogates	Toluene-D8	%	0.2	-	96.5	76.6	72	90.1	97.2	96.7		110	101	111	112	106	99.15
	4-Bromofluorobenzene	%	0.2	-	91.4	70.8	72	81.6	82.7	84.7		92.7	90.3	99.9	95.8	91.8	92.08
	2-Fluorobiphenyl	%	10	-	72.5	97.6	102	83	87.3	90.1		83.7	88.1	92.2	76.1	80.6	89.04
	Anthracene-d10	%	10	-	98.8	92.7	86.2	81.9	109	72.5		103	86	87.6	95.2	95.2	92.87
	4-Terphenyl-d14	%	10	-	99.3	99.9	82.2	81.1	83.7	101		93.4	84.6	103	88.3	92.4	95.89
	2.4-Dichlorophenyl Acetic Acid	%	0.02	-		108				90.2		82.7		84.7			76.14
Surrogate						0.2	0.1	8.3	8.3	8.7	8.4	7.4	8	7.8	7.6	7.7	8.50
Acc Field	pH (F)	pH Unit	0.1	8.4		8.2	8.1	0.5	0.5	0.7	0.4	7.1	<u> </u>	7.0	7.0	····	-
Acc Field	pH (Fox)	pH Unit pH Unit	0.1	8.4 7.7		8.2 6.9	7.2	8.5 7	7	7	7	6.8	6.9	7.0	7.1	7.2	7.59

						trip	olicate			duplicat	e		duplicate			duplicate			replicate	
				Location	TB1	TB1	TB1	RSD (%)	TB10	TB10	RPD (%)	03	03	RPD (%)	OC3	OC3	RPD (%)	C6	C6	RPD (%)
				Lab	ALS	ALS	ALS		ALS	ALS		ALS	ALS		ALS	ALS		ALS	ALS	
Analytical Group	Analyte	Units	LoR	INAGD (ISQG																
Organics	Total Organic Carbon	%	0	-	0.19	0.22	0.26	16	0.26	0.26	0	0.2	0.2	12	0.34	0.24	34	0.24	0.2	18
- 0	Aluminium	mg/kg	50	-	11800	13200	11900	6	9020	8790	3	7930.0	6610.0	18	7640	8750	14	5530	5150	7
	Antimony	mg/kg	0.5	2	0.25	0.25	0.25	0	0.25	0.25	0	0.3	0.3	0	0.25	0.25	0	0.25	0.25	0
	Arsenic	mg/kg	1	20	15.1	16.6	15.6	5	16.4	15.6	5	22.7	22.7	0	23.1	20.9	10	24.2	31.4	26
	Cadmium	mg/kg	0.1	1.5	0.05	0.05	0.05	0	0.05	0.05	0	0.1	0.1	0	0.1	0.05	67	0.05	0.1	67
	Chromium	mg/kg	1	80	47	50.5	47.3	4	38.3	37.8	1	33.4	28.3	17	29.3	36.5	22	21.9	21.1	4
	Cobalt	mg/kg	0.5		11.2	12.2	11.5	4	9.8	10	2	9.9	8.9	11	8.1	9.3	14	6.6	6.6	0
	Copper	mg/kg	1	65	17.7	19.1	17.3	5	11.4	11.8	3	9.6	8.1	17	8.8	10.6	19	5.8	6	3
Metals	Iron	mg/kg	1	-	44500	48200	44900	4	36600	35200	4	33800.0	29400.0	14	32600	37100	13	25900	27000	4
	Manganese	mg/kg	10	-	271	299	283	5	254	258	2	391.0	294.0	28	302	316	5	329	373	13
	Mercury	mg/kg	0.01	0.15	0.005	0.005	0.005	0	0.005	0.005	0	0.0	0.0	0	0.005	0.005	0	0.005	0.005	0
	Nickel	mg/kg	1	21	23.7	24.5	25.8	4	18.7	18.2	3	17.1	14.8	14	14	17.1	20	10.8	10	8
	Silver	mg/kg	0.1	1.0	0.05	0.05	0.05	0	0.05	0.05	0	0.1	0.1	0	0.05	0.05	0	0.05	0.05	0
	Vanadium	mg/kg	2		63.3	67.9	63.1	4	50.9	50.4	1	54.9	48.2	13	44.2	49	10	37.5	39.4	5
	Zinc	mg/kg	1	200	28.7	31.4	29.6	5	23	23.6	3	21.6	18.4	16	17.4	20.5	16	13.2	12.5	5
	TRH C6 - C10	mg/kg	3	550	1.5	1.5	1.5	0	1.5	1.5	0	1.5	1.5	0	1.5	1.5	0	1.5	1.5	0
	C6 - C10 Fraction minus BTEX (F1)	mg/kg	3	550	1.5	1.5	1.5	0	1.5	1.5	0	1.5	1.5	0	1.5	1.5	0	1.5	1.5	0
	TRH >C10 - C16	mg/kg	3	550	1.5	1.5	1.5	0	1.5	1.5	0	1.5	1.5	0	1.5	1.5	0	1.5	1.5	0
TRH	TRH >C16 - C34	mg/kg	3	550	1.5	1.5	1.5	0	4	7	55	5.0	6.0	18	1.5	1.5	0	1.5	1.5	0
	TRH >C34 - C40	mg/kg	5	550	2.5	2.5	2.5	0	2.5	2.5	0	2.5	2.5	0	2.5	2.5	0	2.5	2.5	0
	TRH >C10 - C40 Fraction (sum)	mg/kg	3	550	1.5	1.5	1.5	0	4	7	55	5.0	6.0	18	1.5	1.5	0	1.5	1.5	0
	TRH >C10 - C16 Fraction minus Naphthalene (F2)	mg/kg	3	550	1.5	1.5	1.5	0	1.5	1.5	0	1.5	1.5	0	1.5	1.5	0	1.5	1.5	0
	C6 - C9 Fraction	mg/kg	3	550	1.5	1.5	1.5	0	1.5	1.5	0	1.5	1.5	0	1.5	1.5	0	1.5	1.5	0
	C10 - C14 Fraction	mg/kg	3	550	1.5	1.5	1.5	0	1.5	1.5	0	1.5	1.5	0	1.5	1.5	0	1.5	1.5	0
ТРН	C15 - C28 Fraction	mg/kg	3	550	1.5	1.5	1.5	0	3	3	0	4.0	4.0	0	1.5	1.5	0	1.5	1.5	0
	C29 - C36 Fraction	mg/kg	5	550	2.5	2.5	2.5	0	2.5	2.5	0	2.5	2.5	0	2.5	2.5	0	2.5	2.5	0
	C10 - C36 Fraction (sum)	mg/kg	3	550	1.5	1.5	1.5	0	1.5	3	67	4.0	4.0	0	1.5	1.5	0	1.5	1.5	0
	Benzene	mg/kg	0.2	-	0.1	0.1	0.1	0	0.1	0.1	0	0.1	0.1	0	0.1	0.1	0	0.1	0.1	0
	Toluene	mg/kg	0.2	-	0.1	0.1	0.1	0	0.1	0.1	0	0.1	0.1	0	0.1	0.1	0	0.1	0.1	0
	Ethylbenzene	mg/kg	0.2	-	0.1	0.1	0.1	0	0.1	0.1	0	0.1	0.1	0	0.1	0.1	0	0.1	0.1	0
BTEXN	m+p-xylene	mg/kg	0.2	-	0.1	0.1	0.1	0	0.1	0.1	0	0.1	0.1	0	0.1	0.1	0	0.1	0.1	0
	o-xylene	mg/kg	0.2	-	0.1	0.1	0.1	0	0.1	0.1	0	0.1	0.1	0	0.1	0.1	0	0.1	0.1	0
	Total Xylenes	mg/kg	0.5		0.25	0.25	0.25	0	0.25	0.25	0	0.3	0.3	0	0.25	0.25	0	0.25	0.25	0
	Sum of BTEX	mg/kg	0.2		0.1	0.1	0.1	0	0.1	0.1	0	0.1	0.1	0	0.1	0.1	0	0.1	0.1	0
	Naphthalene	μg/kg	5	-	0.1	2.5	0.1	154	0.1	2.5	185	0.1	2.5	185	2.5	2.5	0	0.1	2.5	185
	2-Methylnaphthalene	μg/kg	5	-	2.5	2.5	2.5	0	<5 <4	2.5		2.5 2.0	2.5 2.0	0	2.5	2.5	0	2.5 2	2.5	0
	Acenaphthene	μg/kg	4	-	2	2	2	0	<4	2		2.0	2.0	0	2	2	0		2	0
	Acenaphthylene Anthracene	μg/kg μg/kg	4	-	2 2	2	2	0	<4 <4	2		2.0	2.0	0	2	2	0	2	2	0
	Benzo(a)anthracene	μg/kg μg/kg	4	-	2	2	2	0	<4	2		2.0	2.0	0	2	2	0	2	2	0
	Benzo(a)pyrene	μg/kg	4	-	2	2	2	0	<4	2		2.0	2.0	0	2	2	0	2	2	0
	Benzo(b+j)fluoranthene	μg/kg	4		2	2	2	0	<4	2		2.0	2.0	0	2	2	0	2	2	0
	Benzo(k)fluoranthene	μg/kg	4		2	2	2	0	<4	2		2.0	2.0	0	2	2	0	2	2	0
	Benzo(e)pyrene	μg/kg	4	-	2	2	2	0	<4	2		2.0	2.0	0	2	2	0	2	2	0
	Benzo(g,h,i)perylene	μg/kg	4	-	2	2	2	0	<4	2		2.0	2.0	0	2	2	0	2	2	0
OC/OP	Chrysene	μg/kg	4	-	2	2	2	0	<4	2		2.0	2.0	0	2	2	0	2	2	0
Pesticides	Coronene	μg/kg	5	-	2.5	2.5	2.5	0	<5	2.5		2.5	2.5	0	2.5	2.5	0	2.5	2.5	0
	Dibenzo(a,h)anthracene	μg/kg	4	-	2.5	2.5	2.5	0	<4	2.5		2.0	2.0	0	2.5	2.5	0	2.5	2.5	0
	Fluoranthene	μg/kg	4	-	2	2	2	0	<4	2		2.0	2.0	0	2	2	0	2	2	0
	Fluorene	μg/kg	4	-	2	2	2	0	<4	2		2.0	2.0	0	2	2	0	2	2	0
	Indeno(1,2,3-c,d)pyrene	μg/kg	5	-	2	2.5	2	13	<4	2.5		2.0	2.5	22	2	2.5	22	2	2.5	22
	Naphthalene (PAH)	μg/kg	5.0		2	2.5	2	13	<4	2.5		2.0	2.5	22	2.5	2.5	0	2.5	2.5	0
	Perylene	μg/kg	4	-	2	2.5	2	0	<4	2.5		2.0	2.0	0	2.5	2.5	0	2.5	2.5	0
	Phenanthrene	μg/kg	4	-	2	2	2	0	<4	2		2.0	2.0	0	2	2	0	2	2	0
	Pyrene	μg/kg	4	-	2	2	2	0	<4	2		2.0	2.0	0	2	2	0	2	2	0
	Sum of PAHs	μg/kg	4	10000	2	2	2	0	<4	2		2.0	2.0	0	2	2	0	2	2	0
		με/ Kg	4	10000	۷	2	2	U	<u>\</u> 4	۷		2.0	2.0	0	۷.	۷	0	2	2	

BCI MINERALS

Mardie Minerals Pty Ltd

	RINE							pling and Ana Report App		1						\sim			MIN	LIV
					5		licate	n Report App	enaix B	duplicat	Р		duplicate			duplicate			replicate	TEE
				Location I	TB1	TB1	TB1	RSD (%)	TB10		RPD (%)	03	03	RPD (%)	0C3		RPD (%)	C6	C6	RPD (%
				Lab	ALS	ALS	ALS	1.00 (70)	ALS	ALS		ALS	ALS		ALS	ALS		ALS	ALS	1.1.0 (//
Analytical				NAGD								_			-			-		
Group	Analyte	Units	LoR	(ISQG																
Organotin	Tripropultin		0.5		72.1	07.7	56.2	10		06					60.7			76.0	0E E	11
Surrogate	Tripropyltin	%	0.5		73.1	82.2	56.2	19		86					69.7			76.8	85.5	11
	Monobutyltin as Sn	μg/kg	1	-											<1			0.5	0.5	0
Organotins	Dibutyltin as Sn	μg/kg	1	-											<1			0.5	0.5	0
	Tributyltin as Sn	μg/kg	0.5	9	0.25	0.25	0.25	0		0.25					<0.5			0.25	0.25	0
Phyiscal	Moisture	%	1	-	28.8	33.3	31.2	7	36.4	35.4	3	21.0	28.8	31	29.9	33.3	11	26.3	32.4	21
	75.0 mm	% passing	1	-											0.5	0.5	0		0.5	
	37.5 mm	% passing	1	-											0.5	0.5	0		0.5	
	19.0 mm	% passing	1	-											0.5	0.5	0		0.5	
	9.5 mm	% passing	1	-											6	0.5	169		2	
	4.75 mm	% passing	1	-											19	12	45		7	
	2.36 mm	% passing	1	-											29	22	27		15	
	1.18 mm	% passing	1	-											40	36	11		30	<u> </u>
	0.600 mm	% passing	1	_											53	50	6		51	
	0.425 mm	% passing % passing	1	_			<u> </u>							<u>├──</u> ┤	60	58	3		60	1
	0.300 mm	% passing	1	-				-						+	68	66	3		68	
				-						l	├			┝───┤						
	0.150 mm	% passing	1												83	79	5		75	
	0.075 mm	% passing	1	-											88	86	2		87	
Soil	Clay (<2 µm)	%	1	-											4	3	29		3	
Classification	Silt (2-60 μm)	%	1	-										<u> </u>	5	7	33		6	
based on	Sand (0.06-2.00 mm)	%	1	-											59	64	8		71	ļ
particle size	Gravel (>2mm)	%	1	-											32	26	21		20	
-	Cobbles (>6cm)	%	1	-											0.5	0.5	0		0.5	<u> </u>
Soil Particle Density	Soil Particle Density (Clay/Silt/Sand)	g/cm3	0.01												2.61	2.64	1		2.63	
	Ammonia as N	mg/kg	20		10	10	10	0	10	10	0	<20	10.0		10	10	0	10	10	0
	Nitrite as N (Sol.)	mg/kg	0.1		0.05	0.05	0.05	0	0.05	0.05	0	<0.1	0.1		0.05	0.05	0	0.05	0.05	0
	Nitrate as N (Sol.)	mg/kg	0.1		0.05	0.05	0.1	43	0.1	0.1	0	0.1	0.3	100	0.3	0.2	40	0.1	0.1	0
Nutrients	Nitrite + Nitrate as N (Sol.)	mg/kg	0.1		0.05	0.05	0.1	43	0.1	0.1	0	0.1	0.3	100	0.3	0.2	40	0.1	0.1	0
	Total Kjeldahl Nitrogen as N	mg/kg	20		310	330	330	0	470	320	38	230.0	330.0	36	350	440	23	250	330	28
	Total Nitrogen as N	mg/kg	20		310	330	330	0	470	320	38	230.0	330.0	36	350	440	23	250	330	28
	Total Phosphorus as P	mg/kg	2		258	288	231	16	271	180	40	241.0	309.0	25	324	338	4	296	358	19
	Reactive Phosphorus as P	mg/kg	0.1		0.1	0.1	0.1	0	0.2	0.05	120	0.05	0.05	0	0.1	0.2	67	0.1	0.1	0
	4-Chlorophenoxy acetic acid	mg/kg	0.02		0.01	0.01	0.01	0		0.01					0.01			0.01	0.01	0
	2.4-DB	mg/kg	0.02		0.01	0.01	0.01	0		0.01					0.01			0.01	0.01	0
	Dicamba	mg/kg	0.02		0.01	0.01	0.01	0		0.01				<u> </u>	0.01			0.01	0.01	0
	Mecoprop	mg/kg	0.02		0.01	0.01	0.01	0		0.01				<u> </u>	0.01			0.01	0.01	0
	МСРА	mg/kg	0.02		0.01	0.01	0.01	0		0.01					0.01			0.01	0.01	0
honovyacatic	2.4-DP	mg/kg	0.02		0.01	0.01	0.01	0		0.01					0.01			0.01	0.01	0
Phenoxyacetic cid Herbicides		mg/kg	0.02		0.01	0.01	0.01	0		0.01					0.01			0.01	0.01	0
by LCMS	Triciopyr	mg/kg	0.02		0.01	0.01	0.01	0		0.01					0.01			0.01	0.01	0
57 20115	2.4.5-TP (Silvex)	mg/kg	0.02		0.01	0.01	0.01	0		0.01					0.01			0.01	0.01	0
	2.4.5-T	mg/kg	0.02		0.01	0.01	0.01	0		0.01					0.01			0.01	0.01	0
	МСРВ	mg/kg	0.02		0.01	0.01	0.01	0		0.01					0.01			0.01	0.01	0
	Picloram	mg/kg	0.02		0.01	0.01	0.01	0		0.01					0.01			0.01	0.01	0
	Clopyralid	mg/kg	0.02		0.01	0.01	0.01	0		0.01					0.01			0.01	0.01	0
	Fluroxypyr	mg/kg	0.02		0.01	0.01	0.01	0		0.01					0.01			0.01	0.01	0
	1.2-Dichloroethane-D4	%	0.2		96.7	106	115	9	104	92.4	12	107.0	114.0	6	76.3	96	23	71.9	106	38
TPH(V)/BTEX	Toluene-D8	%	0.2		103	85.2	102	10	91	92.3	1	106.0	96.5	9	78.6	106	30	80.4	111	32
Surrogates	4-Bromofluorobenzene	%	0.2		103	88.7	102	9	92.1	84.5	9	103.0	91.4	12	75.8	91.8	19	75.8	99.9	27
Baso /Noutral	2-Fluorobiphenyl	%	10		92.2	93	80.4	8	92.4	79.3	15	103.0	72.5	35	103	80.6	24	94.9	92.2	3
Extractable	Anthracene-d10																			
		%	10		92.9	89	82.8	6	101	90.6	11	102.0	98.8	3	82.2	95.2	15	86.7	87.6	1
Surrogates	4-Terphenyl-d14	%	10		103	99.6	97.8	3	103	94.8	8	103.0	99.3	4	88.5	92.4	4	101	103	2
henoxyacetic cid Herbicide Surrogate	2.4-Dichlorophenyl Acetic Acid	%	0.02		59.8	48.8	53	10		60.2					99.5			90.4	84.7	7
Ass Field	рН (F)	pH Unit	0.1	8.4		9.3			8.8	8.9	1	8.4			7.9	8	2.6	8	7.8	1
Screening	pH (Fox)	pH Unit	0.1	7.7		8.6			8.0	7.5	7	7.6			7.0	7	2.8	7	7.0	1
			-	-						-			1				-			

					replicate		- ·	replicate	
				TB2	TB2	RPD (%)	TB5	TB5	RPD (%
Analytical				ALS	MPL		ALS	MPL	1
Analytical Group	Analyte	Units	LoR						
Organics	Total Organic Carbon	%	0	0.34	0.58	52	0.28	0.24	15
-	Aluminium	mg/kg	50	11600.0	12000.0	3	10400	9700	7
	Antimony	mg/kg	0.5	0.3	3.5	173	0.25	0.25	0
	Arsenic	mg/kg	1	21.0	20.0	5	17.2	19	10
	Cadmium	mg/kg	0.1	0.1	0.2	120	0.05	0.05	0
	Chromium	mg/kg	1	44.7	41.0	9	42.9	44	3
	Cobalt	mg/kg	0.5	12.0	11.0	9	10.6	11	4
	Copper	mg/kg	1	13.5	15.0	11	13.6	12	13
Metals	Iron	mg/kg	1	44700.0	39000.0	14	38900	37000	5
	Manganese	mg/kg	10	478.0	320.0	40	266	340	24
	Mercury	mg/kg	0.01	0.0	0.1	164	0.005	0.005	0
	Nickel	mg/kg	1	22.4	19.0	16	20.7	21	1
	Silver	mg/kg	0.1	0.1	0.5	133	0.05	0.05	0
	Vanadium	mg/kg	2	59.8	56.0	7	56.6	60	6
	Zinc	mg/kg	1	29.0	23.0	23	26.4	27	2
	TRH C6 - C10	mg/kg	3	1.5	12.5	157	1.5	12.5	157
	C6 - C10 Fraction minus BTEX (F1)	mg/kg	3	1.5	12.5	157	1.5		
	TRH >C10 - C16	mg/kg	3	1.5	25.0	177	1.5	12.5	157
TRH	TRH >C16 - C34	mg/kg	3	1.5	50.0	188	1.5	12.5	157
	TRH >C34 - C40	mg/kg	5	2.5	50.0	181	2.5	12.5	133
	TRH >C10 - C40 Fraction (sum)	mg/kg	3	1.5	25.0	177	1.5		
	TRH >C10 - C16 Fraction minus Naphthalene (F2)	mg/kg	3	1.5	25.0	177	1.5		
	C6 - C9 Fraction	mg/kg	3	1.5	12.5	157	1.5	12.5	157
	C10 - C14 Fraction	mg/kg	3	1.5			1.5	12.5	157
ТРН	C15 - C28 Fraction	mg/kg	3	1.5	50.0	188	1.5	12.5	157
	C29 - C36 Fraction	mg/kg	5	2.5	50.0	181	2.5	12.5	133
	C10 - C36 Fraction (sum)	mg/kg	3	1.5			1.5		
	Benzene	mg/kg	0.2	0.1	0.1	0	0.1	0.1	0
	Toluene	mg/kg	0.2	0.1	0.3	86	0.1	0.1	0
	Ethylbenzene	mg/kg	0.2	0.1	0.5	133	0.1	0.1	0
DTEVAL	m+p-xylene	mg/kg	0.2	0.1	1.0	164	0.1	0.2	67
BTEXN	o-xylene	mg/kg	0.2	0.1	0.5	133	0.1	0.1	0
	Total Xylenes	mg/kg	0.5	0.3			0.25		
	Sum of BTEX	mg/kg	0.2	0.1			0.1		
	Naphthalene	μg/kg	5	2.5	0.5	133	2.5	2.5	0
	2-Methylnaphthalene	μg/kg	5	2.5			2.5	2.5	0
	Acenaphthene	μg/kg	4	2.0	100.0	192	2	2.5	22
	Acenaphthylene	μg/kg	4	2.0	100.0	192	2	2.5	22
	Anthracene	μg/kg	4	2.0	100.0	192	2	2.5	22
	Benzo(a)anthracene	μg/kg	4	2.0	100.0	192	2	2.5	22
	Benzo(a)pyrene	µg/kg	4	2.0	100.0	192	2	2.5	22
	Benzo(b+j)fluoranthene	µg/kg	4	2.0	100.0	192	2	5	86
	Benzo(k)fluoranthene	μg/kg	4	2.0			2	2.5	22
	Benzo(e)pyrene	µg/kg	4	2.0			2		
	Benzo(g,h,i)perylene	µg/kg	4	2.0	100.0	192	2	2.5	22
OC/OP	Chrysene	µg/kg	4	2.0	100.0	192	2	2.5	22
esticides	Coronene	μg/kg	5	2.5			2.5	2.5	0
	Dibenzo(a,h)anthracene	μg/kg	4	2.0	100.0	192	2	2.5	22
	Fluoranthene	µg/kg	4	2.0	100.0	192	2	2.5	22
	Fluorene	μg/kg	4	2.0	100.0	192	2	2.5	22
	Indeno(1,2,3-c,d)pyrene	μg/kg	5	2.5	100.0	190	2.5	2.5	0
	Naphthalene (PAH)	μg/kg	5.0	2.5	100.0	190	2.5		
	Perylene	μg/kg	4	2.0			2	2.5	22
	Phenanthrene	μg/kg	4	2.0	100.0	192	2	2.5	22
	Pyrene	μg/kg	4	2.0	100.0	192	2	2.5	22
	1 -	10.0			-				· · · · ·

02 🔀	MARINE
------	--------

					replicate	plementation		replicate	9
				TB2	TB2	RPD (%)	TB5	TB5	RPD (%)
	1			ALS	MPL		ALS	MPL	
Analytical Group	Analyte	Units	LoR						
Organotin Surrogate	Tripropyltin	%	0.5	89.2			75.4		
	Monobutyltin as Sn	μg/kg	1	0.5					
Organotins	Dibutyltin as Sn	μg/kg	1	0.5					
	Tributyltin as Sn	μg/kg	0.5	0.3	0.3	0	0.25		
Phyiscal	Moisture	%	1	50.3	36.0	33	37.1	31	18
	75.0 mm	% passing	1	0.5					
	37.5 mm	% passing	1	0.5					
	19.0 mm	% passing	1	0.5					
	9.5 mm	% passing	1	0.5					
	4.75 mm	% passing	1	0.5					
	2.36 mm	% passing	1	0.5					
	1.18 mm	% passing	1	0.5					
	0.600 mm	% passing	1	0.5					
	0.425 mm	% passing	1	1.0					
	0.300 mm	% passing	1	2.0					
	0.150 mm	% passing	1	6.0					
	0.075 mm	% passing	1	47.0					
	Clay (<2 μm)	%	1	13.0					
Soil	Silt (2-60 µm)	%	1	17.0					
Classification based on	Sand (0.06-2.00 mm)	%	1	70.0					
particle size	Gravel (>2mm)	%	1	0.5					
purticie size	Cobbles (>6cm)	%	1	0.5					
Soil Particle Density	Soil Particle Density (Clay/Silt/Sand)	g/cm3	0.01	2.6					
	Ammonia as N	mg/kg	20	10.0	7.1	34	10	5.7	55
	Nitrite as N (Sol.)	mg/kg	0.1	0.1	0.1	0	0.05	0.05	0
	Nitrate as N (Sol.)	mg/kg	0.1	0.2	0.1	120	0.05	0.11	75
Nutrients	Nitrite + Nitrate as N (Sol.)	mg/kg	0.1	0.2			0.05		
	Total Kjeldahl Nitrogen as N	mg/kg	20	490.0	350.0	33	400	440	10
	Total Nitrogen as N Total Phosphorus as P	mg/kg mg/kg	20 2	490.0 348.0	350.0 300.0	33 15	400 314	440 250	10 23
	Reactive Phosphorus as P	mg/kg	0.1	0.2	0.3	22	0.05	0.25	133
	4-Chlorophenoxy acetic acid	mg/kg	0.02	0.2	0.3	185	0.05		133
	2.4-DB	mg/kg	0.02	0.0	0.3	185	0.01		
	Dicamba	mg/kg	0.02	0.0	0.3	185	0.01		
	Mecoprop	mg/kg	0.02	0.0	0.3	185	0.01		
	МСРА	mg/kg	0.02	0.0	0.3	185	0.01		
	2.4-DP	mg/kg	0.02	0.0	0.3	185	0.01		
Phenoxyacetic	2.4-D	mg/kg	0.02	0.0	0.3	185	0.01		
Acid Herbicides	Triclopyr	mg/kg	0.02	0.0	0.3	185	0.01		
by LCMS	2.4.5-TP (Silvex)	mg/kg	0.02	0.0	0.3	185	0.01		
	2.4.5-T	mg/kg	0.02	0.0	0.3	185	0.01		
	МСРВ	mg/kg	0.02	0.0			0.01		
	Picloram	mg/kg	0.02	0.0	0.3	185	0.01		
	Clopyralid	mg/kg	0.02	0.0	0.3	185	0.01		
	Fluroxypyr	mg/kg	0.02	0.0			0.01		
	1.2-Dichloroethane-D4	%	0.2	75.6			93.1		
TPH(V)/BTEX	Toluene-D8	%	0.2	76.6			79.2		
Surrogates	4-Bromofluorobenzene	%	0.2	70.8			81.6		
Base/Neutral	2-Fluorobiphenyl	%	10	97.6			86		
-	Anthracene-d10	%	10	92.7			88.5		
Surrogates	4-Terphenyl-d14	%	10	99.9	93.0	7	94.2	68	32
Phenoxyacetic Acid Herbicide Surrogate	2.4-Dichlorophenyl Acetic Acid	%	0.02	108.0	0.3	199	49.9		
Ass Field	рН (F)	pH Unit	0.1	8	8.0	2.5	8.4	8.4	0
/ 00 / 1010									T
Screening	pH (Fox)	pH Unit	0.1	7	8.0	14.8	7.8	8.0	3

Appendix C Laboratory QA/QC & Methods

QUALITY CONTROL REPORT

Work Order	: EP1814856	Page	: 1 of 11	
Client		Laboratory	: Environmental Division Pe	rth
Contact	: Claudio Deldeo	Contact	: Marnie Thomsett	
Address	SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370 DUNSBOROUGH, PERTH WA, AUSTRALIA 6281	Address	: 26 Rigali Way Wangara W	A Australia 6065
Telephone	:	Telephone	: 08 9406 1311	
Project	: 18WAU-0002 Mardie Project: Sediment Sampling	Date Samples Received	: 19-Dec-2018	
Order number	:	Date Analysis Commenced	: 20-Dec-2018	
C-O-C number	:	Issue Date	: 07-Jan-2019	
Sampler	: Claudio Deldeo			HAC-MRA NATA
Site	:			
Quote number	: EP/1145/18			Accreditation No. 825
No. of samples received	: 13			Accredited for compliance with
No. of samples analysed	: 13			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Alex Rossi	Organic Chemist	Sydney Organics, Smithfield, NSW
Canhuang Ke	Inorganics Supervisor	Perth Inorganics, Wangara, WA
Daniel Fisher	Inorganics Analyst	Perth ASS, Wangara, WA
Diana Mesa	2IC Organic Chemist	Brisbane Organics, Stafford, QLD
Dianne Blane	Laboratory Coordinator (2IC)	Newcastle - Inorganics, Mayfield West, NSW
Efua Wilson	Metals Chemist	Perth Inorganics, Wangara, WA
Indra Astuty	Instrument Chemist	Perth Inorganics, Wangara, WA
Kim McCabe	Senior Inorganic Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Sarah Ashworth	Laboratory Manager - Brisbane	Brisbane Organics, Stafford, QLD
Vanessa Nguyen	Organic Chemist	Perth Organics, Wangara, WA

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG035T: Total Reco	overable Mercury by Fl	MS (Low Level) (QC Lot: 2106549)							
EP1814856-001	SPLIT-P1	EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	<0.01	0.00	No Limit
EP1814856-012	OC2	EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	<0.01	0.00	No Limit
EA037: Ass Field S	creening Analysis (QC	: Lot: 2108096)							
EP1814856-001	SPLIT-P1	EA037: pH (F)		0.1	pH Unit	7.9	8.0	1.26	0% - 20%
		EA037: pH (Fox)		0.1	pH Unit	6.9	6.9	0.00	0% - 20%
EP1814856-010	C5	EA037: pH (F)		0.1	pH Unit	8.0	7.9	0.00	0% - 20%
		EA037: pH (Fox)		0.1	pH Unit	6.9	6.9	0.00	0% - 20%
EA055: Moisture Co	ntent (Dried @ 105-110	°C) (QC Lot: 2106558)							
EP1814856-001	SPLIT-P1	EA055: Moisture Content		0.1	%	26.3	25.0	5.13	0% - 20%
EP1814856-011	C6-1	EA055: Moisture Content		0.1	%	32.4	32.2	0.507	0% - 20%
EA055: Moisture Co	ntent (Dried @ 105-110	°C) (QC Lot: 2106591)							
EP1814843-047	Anonymous	EA055: Moisture Content		0.1	%	4.4	4.4	0.00	No Limit
EP1814884-013	Anonymous	EA055: Moisture Content		0.1	%	11.0	10.8	1.84	0% - 50%
EG005-SD: Total Me	tals in Sediments by IC	CP-AES (QC Lot: 2106550)							
EP1814856-001	SPLIT-P1	EG005-SD: Aluminium	7429-90-5	50	mg/kg	5530	5670	2.51	0% - 20%
		EG005-SD: Iron	7439-89-6	50	mg/kg	25900	27000	4.32	0% - 20%
EP1814856-012	OC2	EG005-SD: Aluminium	7429-90-5	50	mg/kg	7530	7930	5.17	0% - 20%
		EG005-SD: Iron	7439-89-6	50	mg/kg	37600	32500	14.6	0% - 20%
EG020-SD: Total Me	tals in Sediments by IC	CPMS (QC Lot: 2106551)							
EP1814856-001	SPLIT-P1	EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
		EG020-SD: Silver	7440-22-4	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
		EG020-SD: Antimony	7440-36-0	0.5	mg/kg	<0.50	<0.50	0.00	No Limit
		EG020-SD: Cobalt	7440-48-4	0.5	mg/kg	6.6	6.9	4.50	0% - 50%
		EG020-SD: Arsenic	7440-38-2	1	mg/kg	24.2	25.6	5.78	0% - 20%

Page	: 3 of 11
Work Order	: EP1814856
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Sub-Matrix: SOIL									
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020-SD: Total Me	tals in Sediments by ICPMS	(QC Lot: 2106551) - continued							
EP1814856-001	SPLIT-P1	EG020-SD: Chromium	7440-47-3	1	mg/kg	21.9	22.9	4.62	0% - 20%
		EG020-SD: Copper	7440-50-8	1	mg/kg	5.8	6.2	5.99	No Limit
		EG020-SD: Nickel	7440-02-0	1	mg/kg	10.8	11.1	3.60	0% - 50%
		EG020-SD: Zinc	7440-66-6	1	mg/kg	13.2	14.1	6.10	0% - 50%
		EG020-SD: Manganese	7439-96-5	10	mg/kg	329	313	4.87	0% - 20%
		EG020-SD: Vanadium	7440-62-2	2	mg/kg	37.5	40.0	6.47	0% - 50%
EP1814856-012	OC2	EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	0.2	<0.1	68.6	No Limit
		EG020-SD: Silver	7440-22-4	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
		EG020-SD: Antimony	7440-36-0	0.5	mg/kg	<0.50	<0.50	0.00	No Limit
		EG020-SD: Cobalt	7440-48-4	0.5	mg/kg	9.6	7.8	20.7	0% - 50%
		EG020-SD: Arsenic	7440-38-2	1	mg/kg	17.3	18.1	4.31	0% - 50%
		EG020-SD: Chromium	7440-47-3	1	mg/kg	31.4	31.2	0.669	0% - 20%
		EG020-SD: Copper	7440-50-8	1	mg/kg	9.5	9.2	2.81	No Limit
		EG020-SD: Nickel	7440-02-0	1	mg/kg	15.2	14.9	2.35	0% - 50%
		EG020-SD: Zinc	7440-66-6	1	mg/kg	19.0	18.1	4.64	0% - 50%
		EG020-SD: Manganese	7439-96-5	10	mg/kg	276	263	4.77	0% - 20%
		EG020-SD: Vanadium	7440-62-2	2	mg/kg	46.8	42.4	9.95	0% - 20%
EK055: Ammonia as	N (QC Lot: 2106559)								
EP1814856-001	SPLIT-P1	EK055: Ammonia as N	7664-41-7	20	mg/kg	<20	<20	0.00	No Limit
EP1814856-011	C6-1	EK055: Ammonia as N	7664-41-7	20	mg/kg	<20	<20	0.00	No Limit
EK057G: Nitrite as I	N by Discrete Analyser (QC								
EP1814856-011	C6-1	EK057G: Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EP1814856-001	SPLIT-P1	EK057G: Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
		crete Analyser (QC Lot: 2106557)		0.1		0	0	0.00	
EP1814856-011	C6-1			0.1	malka	0.1	0.2	0.00	No Limit
EP1814856-001	SPLIT-P1	EK059G: Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	0.1	0.2	0.00	No Limit
		EK059G: Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	0.1	0.1	0.00	NO LIMIL
	lahl Nitrogen By Discrete An								
EP1814856-001	SPLIT-P1	EK061G: Total Kjeldahl Nitrogen as N		20	mg/kg	250	260	4.14	0% - 50%
EP1814856-012	OC2	EK061G: Total Kjeldahl Nitrogen as N		20	mg/kg	480	470	2.37	0% - 20%
EK067G: Total Phos	phorus as P by Discrete Ana	alyser (QC Lot: 2106552)							
EP1814856-001	SPLIT-P1	EK067G: Total Phosphorus as P		2	mg/kg	296	261	12.6	0% - 20%
EP1814856-012	OC2	EK067G: Total Phosphorus as P		2	mg/kg	252	260	3.42	0% - 20%
EK071G: Reactive P	hosphorus as P by discrete	analyser (QC Lot: 2106556)							
EP1814856-012	OC2	EK071G: Reactive Phosphorus as P	14265-44-2	0.1	mg/kg	0.2	0.2	0.00	No Limit
EP1814856-001	SPLIT-P1	EK071G: Reactive Phosphorus as P	14265-44-2	0.1	mg/kg	0.1	0.1	0.00	No Limit
EP003: Total Organi	c Carbon (TOC) in Soil (QC								
EP1814856-001	SPLIT-P1	EP003: Total Organic Carbon		0.02	%	0.24	0.23	0.00	0% - 50%
EP1814856-012	OC2	EP003: Total Organic Carbon EP003: Total Organic Carbon		0.02	%	0.21	0.23	0.00	0% - 50%
	D: Total Petroleum Hydroca			0.02	/0	0.21	0.22	0.00	070-0070

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080-SD / EP071-S	SD: Total Petroleum Hy	drocarbons (QC Lot: 2106892) - continued							
EP1814856-001	SPLIT-P1	EP080-SD: C6 - C9 Fraction		3	mg/kg	<3	<3	0.00	0% - 3%
EP1814856-012	OC2	EP080-SD: C6 - C9 Fraction		3	mg/kg	<3	<3	0.00	0% - 3%
EP080-SD / EP071-S	SD: Total Petroleum Hy	drocarbons (QC Lot: 2106896)							
EP1814856-001	SPLIT-P1	EP071-SD: C10 - C14 Fraction		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: C15 - C28 Fraction		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: C10 - C36 Fraction (sum)		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: C29 - C36 Fraction		5	mg/kg	<5	<5	0.00	No Limit
EP1814856-012	OC2	EP071-SD: C10 - C14 Fraction		3	mg/kg	<3	<4	40.0	No Limit
		EP071-SD: C15 - C28 Fraction		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: C10 - C36 Fraction (sum)		3	mg/kg	<3	<4	40.0	No Limit
		EP071-SD: C29 - C36 Fraction		5	mg/kg	<5	<5	0.00	No Limit
EP080-SD / EP071-S	SD: Total Recoverable H	lydrocarbons (QC Lot: 2106892)							
EP1814856-001	SPLIT-P1	EP080-SD: C6 - C10 Fraction	C6_C10	3	mg/kg	<3	<3	0.00	0% - 3%
EP1814856-012	OC2	EP080-SD: C6 - C10 Fraction	 C6_C10	3	mg/kg	<3	<3	0.00	0% - 3%
EP080-SD / EP071-S	SD: Total Recoverable H	lydrocarbons (QC Lot: 2106896)							
EP1814856-001 SPLIT-P1		EP071-SD: >C10 - C16 Fraction		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: >C16 - C34 Fraction		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: >C10 - C40 Fraction (sum)		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: >C34 - C40 Fraction		5	mg/kg	<5	<5	0.00	No Limit
EP1814856-012	OC2	EP071-SD: >C10 - C16 Fraction		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: >C16 - C34 Fraction		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: >C10 - C40 Fraction (sum)		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: >C34 - C40 Fraction		5	mg/kg	<5	<5	0.00	No Limit
EP080-SD: BTEXN	(QC Lot: 2106892)								
EP1814856-001	SPLIT-P1	EP080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: meta- & para-Xylene	108-38-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
			106-42-3		0.0				
		EP080-SD: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Total Xylenes		0.2	mg/kg	<0.5	<0.5	0.00	0%2%
		EP080-SD: Sum of BTEX		0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Naphthalene	91-20-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
EP1814856-012	OC2	EP080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: meta- & para-Xylene	108-38-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
			106-42-3						
		EP080-SD: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Total Xylenes		0.2	mg/kg	<0.5	<0.5	0.00	0%2%

Page	5 of 11
Work Order	: EP1814856
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Sub-Matrix: SOIL]			Laboratory	Duplicate (DUP) Report	1	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080-SD: BTEXN	(QC Lot: 2106892) - co								
EP1814856-012	OC2	EP080-SD: Sum of BTEX		0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Naphthalene	91-20-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
EP090: Organotin C	ompounds (QC Lot: 2	109384)							
EP1814856-007	C3-1	EP090: Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5	<0.5	0.00	No Limit
		EP090: MonobutyItin	78763-54-9	1	µgSn/kg	<1	<1	0.00	No Limit
		EP090: DibutyItin	1002-53-5	1	µgSn/kg	<1	<1	0.00	No Limit
EP132B: Polynuclea	ar Aromatic Hydrocarb	ons (QC Lot: 2106897)							
EP1814856-001	SPLIT-P1	EP132B-SD: Acenaphthylene	208-96-8	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Acenaphthene	83-32-9	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Fluorene	86-73-7	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Phenanthrene	85-01-8	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Anthracene	120-12-7	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Fluoranthene	206-44-0	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Pyrene	129-00-0	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benz(a)anthracene	56-55-3	4	µg/kg	<4	<4	0.00	No Limit
	EP132B-SD: Chrysene	218-01-9	4	µg/kg	<4	<4	0.00	No Limit	
		EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	4	µg/kg	<4	<4	0.00	No Limit
			205-82-3						
		EP132B-SD: Benzo(k)fluoranthene	207-08-9	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(e)pyrene	192-97-2	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(a)pyrene	50-32-8	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Perylene	198-55-0	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Sum of PAHs		4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Naphthalene	91-20-3	5	µg/kg	<5	<5	0.00	No Limit
		EP132B-SD: 2-Methylnaphthalene	91-57-6	5	µg/kg	<5	<5	0.00	No Limit
		EP132B-SD: Coronene	191-07-1	5	µg/kg	<5	<5	0.00	No Limit
EP1814856-012	OC2	EP132B-SD: Acenaphthylene	208-96-8	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Acenaphthene	83-32-9	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Fluorene	86-73-7	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Phenanthrene	85-01-8	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Anthracene	120-12-7	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Fluoranthene	206-44-0	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Pyrene	129-00-0	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benz(a)anthracene	56-55-3	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Chrysene	218-01-9	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	4	µg/kg	<4	<4	0.00	No Limit
			205-82-3						

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	-	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP132B: Polynuclea	ar Aromatic Hydrocarbo	ons (QC Lot: 2106897) - continued							
EP1814856-012	OC2	EP132B-SD: Benzo(k)fluoranthene	207-08-9	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(e)pyrene	192-97-2	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(a)pyrene	50-32-8	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Perylene	198-55-0	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Sum of PAHs		4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Naphthalene	91-20-3	5	µg/kg	<5	<5	0.00	No Limit
		EP132B-SD: 2-Methylnaphthalene	91-57-6	5	µg/kg	<5	<5	0.00	No Limit
		EP132B-SD: Coronene	191-07-1	5	µg/kg	<5	<5	0.00	No Limit
EP202A: Phenoxyac	etic Acid Herbicides by	/ LCMS (QC Lot: 2108754)							
EB1830936-003	Anonymous	EP202: 4-Chlorophenoxy acetic acid	122-88-3	0.02	mg/kg	< 0.02	<0.02	0.00	No Limit
	,	EP202: 2.4-DB	94-82-6	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: Dicamba	1918-00-9	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
	EP202: Mecoprop	93-65-2	0.02	mg/kg	<0.02	<0.02	0.00	No Limit	
		EP202: MCPA	94-74-6	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: 2.4-DP	120-36-5	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: 2.4-D	94-75-7	0.02	mg/kg	<0.02	< 0.02	0.00	No Limit
		EP202: Triclopyr	55335-06-3	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: 2.4.5-TP (Silvex)	93-72-1	0.02	mg/kg	< 0.02	<0.02	0.00	No Limit
		EP202: 2.4.5-T	93-76-5	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: MCPB	94-81-5	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: Picloram	1918-02-1	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: Clopyralid	1702-17-6	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: Fluroxypyr	69377-81-7	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
EP1814856-002	TRIP-1	EP202: 4-Chlorophenoxy acetic acid	122-88-3	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: 2.4-DB	94-82-6	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: Dicamba	1918-00-9	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: Mecoprop	93-65-2	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: MCPA	94-74-6	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: 2.4-DP	120-36-5	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: 2.4-D	94-75-7	0.02	mg/kg	< 0.02	<0.02	0.00	No Limit
		EP202: Triclopyr	55335-06-3	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: 2.4.5-TP (Silvex)	93-72-1	0.02	mg/kg	< 0.02	<0.02	0.00	No Limit
		EP202: 2.4.5-T	93-76-5	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: MCPB	94-81-5	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: Picloram	1918-02-1	0.02	mg/kg	< 0.02	<0.02	0.00	No Limit
		EP202: Clopyralid	1702-17-6	0.02	mg/kg	< 0.02	<0.02	0.00	No Limit
		EP202: Fluroxypyr	69377-81-7	0.02	mg/kg	< 0.02	< 0.02	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	Higl	
G035T: Total Recoverable Mercury by FIMS (Lov	v Level) (QCLot: 2106549)							
EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	2.154 mg/kg	106	80	120	
EG005-SD: Total Metals in Sediments by ICP-AES	(QCLot: 2106550)								
EG005-SD: Aluminium	7429-90-5	50	mg/kg	<50					
EG005-SD: Iron	7439-89-6	50	mg/kg	<50					
EG020-SD: Total Metals in Sediments by ICPMS (QCLot: 2106551)								
EG020-SD: Antimony	7440-36-0	0.5	mg/kg	<0.50					
G020-SD: Arsenic	7440-38-2	1	mg/kg	<1.00	21.62091 mg/kg	110	74	130	
G020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	4.6838 mg/kg	107	97	113	
EG020-SD: Chromium	7440-47-3	1	mg/kg	<1.0	33.904 mg/kg	146	72	152	
EG020-SD: Copper	7440-50-8	1	mg/kg	<1.0	33.782 mg/kg	104	76	116	
EG020-SD: Cobalt	7440-48-4	0.5	mg/kg	<0.5					
EG020-SD: Manganese	7439-96-5	10	mg/kg	<10					
EG020-SD: Nickel	7440-02-0	1	mg/kg	<1.0	51.10088 mg/kg	126	81	135	
G020-SD: Silver	7440-22-4	0.1	mg/kg	<0.1					
EG020-SD: Vanadium	7440-62-2	2	mg/kg	<2.0					
G020-SD: Zinc	7440-66-6	1	mg/kg	<1.0	61.70999 mg/kg	121	81	14:	
K055: Ammonia as N (QCLot: 2106559)									
K055: Ammonia as N	7664-41-7	20	mg/kg	<20	50 mg/kg	87.6	70	130	
EK057G: Nitrite as N by Discrete Analyser (QCLo	t: 2106555)								
K057G: Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1	2.5 mg/kg	102	89	121	
EK059G: Nitrite plus Nitrate as N (NOx) by Discre	te Analyser (QCLot: 210	3557)							
K059G: Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	<0.1	2.5 mg/kg	102	90	112	
EK061G: Total Kjeldahl Nitrogen By Discrete Anal	vser (OCI of: 2106553)								
EK061G: Total Kjeldahl Nitrogen as N		20	mg/kg	<20	1000 mg/kg	85.4	78	112	
			5.5	<20	100 mg/kg	91.1	70	130	
K067G: Total Phosphorus as P by Discrete Analy	(ser (QCLot: 2106552)								
EK067G: Total Phosphorus as P		2	mg/kg	<2	440 mg/kg	83.0	78	108	
				<2	44 mg/kg	73.4	70	130	
EK071G: Reactive Phosphorus as P by discrete ar	nalvser (QCLot: 2106556)								
K071G: Reactive Phosphorus as P	14265-44-2	0.1	mg/kg	<0.1	2.5 mg/kg	101	92	112	
EP003: Total Organic Carbon (TOC) in Soil (QCLo								1	
EP003: Total Organic Carbon EP003: Total Organic Carbon		0.02	%	<0.02	0.44 %	96.8	70	130	
			,,,	5.02			. •		

Page	: 8 of 11
Work Order	: EP1814856
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
P080-SD / EP071-SD: Total Petroleum Hydrod	carbons (QCLot: 2106892) - (continued						
P080-SD: C6 - C9 Fraction		3	mg/kg	<3	32 mg/kg	98.6	70	130
P080-SD / EP071-SD: Total Petroleum Hydrod	carbons (QCLot: 2106896)							
P071-SD: C10 - C14 Fraction		3	mg/kg	<3	252 mg/kg	116	70	130
P071-SD: C15 - C28 Fraction		3	mg/kg	<3	634 mg/kg	117	70	130
P071-SD: C29 - C36 Fraction		5	mg/kg	<5	99 mg/kg	107	70	130
P071-SD: C10 - C36 Fraction (sum)		3	mg/kg	<3				
P080-SD / EP071-SD: Total Recoverable Hydr	rocarbons (QCLot: 2106892)							
P080-SD: C6 - C10 Fraction	C6_C10	3	mg/kg	<3	37 mg/kg	97.6	70	130
P080-SD / EP071-SD: Total Recoverable Hydr	rocarbons (OCI of: 2106896)					· · · · ·		
P071-SD: >C10 - C16 Fraction		3	mg/kg	<3	404 mg/kg	119	70	130
P071-SD: >C16 - C34 Fraction		3	mg/kg	<3	567 mg/kg	109	70	130
P071-SD: >C34 - C40 Fraction		5	mg/kg	<5	33 mg/kg	101	70	130
P071-SD: >C10 - C40 Fraction (sum)		3	mg/kg	<3				
EP080-SD: BTEXN (QCLot: 2106892)								
P080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	2 mg/kg	96.7	70	130
P080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	2 mg/kg	100	70	130
P080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	2 mg/kg	99.0	70	130
P080-SD: meta- & para-Xylene	108-38-3	0.2	mg/kg	<0.2	4 mg/kg	99.8	70	130
	106-42-3		5.5		5.5			
P080-SD: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	2 mg/kg	94.9	70	130
P080-SD: Total Xylenes		0.2	mg/kg	<0.2				
P080-SD: Sum of BTEX		0.2	mg/kg	<0.2				
P080-SD: Naphthalene	91-20-3	0.2	mg/kg	<0.2	0.5 mg/kg	89.5	70	130
P090: Organotin Compounds (QCLot: 21093	84)							
P090: Monobutyltin	78763-54-9	1	µgSn/kg	<1	1.25 µgSn/kg	117	36	128
P090: Dibutyltin	1002-53-5	1	µgSn/kg	<1	1.25 µgSn/kg	# 152	42	132
P090: Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5	1.25 µgSn/kg	128	52	139
P132B: Polynuclear Aromatic Hydrocarbons	(QCL of: 2106897)							
P132B-SD: Naphthalene	91-20-3	5	µg/kg	<5	25 µg/kg	89.0	55	131
P132B-SD: 2-Methylnaphthalene	91-57-6	5	μg/kg	<5				
P132B-SD: Acenaphthylene	208-96-8	4	μg/kg	<4	25 µg/kg	85.9	64	110
P132B-SD: Acenaphthene	83-32-9	4	µg/kg	<4	25 µg/kg	85.7	62	112
P132B-SD: Fluorene	86-73-7	4	µg/kg	<4	25 µg/kg	95.5	64	118
P132B-SD: Phenanthrene	85-01-8	4	µg/kg	<4	25 µg/kg	69.8	59	117
P132B-SD: Anthracene	120-12-7	4	µg/kg	<4	25 µg/kg	76.1	69	111
P132B-SD: Fluoranthene	206-44-0	4	µg/kg	<4	25 µg/kg	82.2	66	118
P132B-SD: Pyrene	129-00-0	4	µg/kg	<4	25 µg/kg	93.4	70	116
EP132B-SD: Benz(a)anthracene	56-55-3	4	µg/kg	<4	25 µg/kg	82.7	59	121

Page	: 9 of 11
Work Order	: EP1814856
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP132B: Polynuclear Aromatic Hydrocarbons	(QCLot: 2106897) - continue	ed						
EP132B-SD: Chrysene	218-01-9	4	µg/kg	<4	25 µg/kg	80.7	68	116
EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	4	µg/kg	<4	25 µg/kg	73.7	51	107
	205-82-3							
EP132B-SD: Benzo(k)fluoranthene	207-08-9	4	µg/kg	<4	25 µg/kg	89.7	52	118
EP132B-SD: Benzo(e)pyrene	192-97-2	4	µg/kg	<4				
EP132B-SD: Benzo(a)pyrene	50-32-8	4	µg/kg	<4	25 µg/kg	87.4	55	111
EP132B-SD: Perylene	198-55-0	4	µg/kg	<4				
EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4	25 µg/kg	89.5	62	106
EP132B-SD: Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	25 µg/kg	97.3	35	141
EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	25 µg/kg	69.7	48	122
EP132B-SD: Coronene	191-07-1	5	µg/kg	<5				
EP132B-SD: Sum of PAHs		4	µg/kg	<4				
EP202A: Phenoxyacetic Acid Herbicides by LC	MS (QCLot: 2108754)							
EP202: 4-Chlorophenoxy acetic acid	122-88-3	0.02	mg/kg	<0.02	0.1 mg/kg	97.7	54	128
EP202: 2.4-DB	94-82-6	0.02	mg/kg	<0.02	0.1 mg/kg	117	46	130
EP202: Dicamba	1918-00-9	0.02	mg/kg	<0.02	0.1 mg/kg	91.0	52	135
EP202: Mecoprop	93-65-2	0.02	mg/kg	<0.02	0.1 mg/kg	95.3	60	130
EP202: MCPA	94-74-6	0.02	mg/kg	<0.02	0.1 mg/kg	98.8	57	131
EP202: 2.4-DP	120-36-5	0.02	mg/kg	<0.02	0.1 mg/kg	135	50	141
EP202: 2.4-D	94-75-7	0.02	mg/kg	<0.02	0.1 mg/kg	106	69	131
EP202: Triclopyr	55335-06-3	0.02	mg/kg	<0.02	0.1 mg/kg	131	51	141
EP202: 2.4.5-TP (Silvex)	93-72-1	0.02	mg/kg	<0.02	0.1 mg/kg	108	41	126
EP202: 2.4.5-T	93-76-5	0.02	mg/kg	<0.02	0.1 mg/kg	122	57	139
EP202: MCPB	94-81-5	0.02	mg/kg	<0.02	0.1 mg/kg	103	39	137
EP202: Picloram	1918-02-1	0.02	mg/kg	<0.02	0.1 mg/kg	63.3	49	129
EP202: Clopyralid	1702-17-6	0.02	mg/kg	<0.02	0.1 mg/kg	62.6	49	106
EP202: Fluroxypyr	69377-81-7	0.02	mg/kg	<0.02	0.1 mg/kg	103	53	128

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL	trix: SOIL					Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery L	Limits (%)				
Laboratory sample ID C	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High				
EG035T: Total Recov	verable Mercury by FIMS (Low Level) (QCLot: 210	5549)									
EP1814856-002 TF	RIP-1	EG035T-LL: Mercury	7439-97-6	10 mg/kg	99.3	70	130				
EG005-SD: Total Meta	als in Sediments by ICP-AES (QCLot: 2106550)										

ub-Matrix: SOIL				M	atrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Recovery L	.imits (%)	
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
G005-SD: Total M	etals in Sediments by ICP-AES (QCLot: 2106550) -co	ontinued						
EP1814856-002	TRIP-1	EG005-SD: Aluminium	7429-90-5	50 mg/kg	# Not	70	130	
					Determined			
		EG005-SD: Iron	7439-89-6	50 mg/kg	# Not	70	130	
					Determined			
G020-SD: Total M	etals in Sediments by ICPMS (QCLot: 2106551)							
EP1814856-002	TRIP-1	EG020-SD: Arsenic	7440-38-2	50 mg/kg	95.3	70	130	
		EG020-SD: Cadmium	7440-43-9	50 mg/kg	96.9	70	130	
		EG020-SD: Chromium	7440-47-3	50 mg/kg	101	70	130	
		EG020-SD: Copper	7440-50-8	50 mg/kg	93.3	70	130	
		EG020-SD: Nickel	7440-02-0	50 mg/kg	94.9	70	130	
		EG020-SD: Zinc	7440-66-6	50 mg/kg	95.8	70	130	
EK055: Ammonia a	IS N (QCLot: 2106559)							
EP1814856-002	TRIP-1	EK055: Ammonia as N	7664-41-7	50 mg/kg	86.8	70	130	
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 2106555)							
EP1814856-002	TRIP-1	EK057G: Nitrite as N (Sol.)	14797-65-0	2.5 mg/kg	111	70	130	
-K059G: Nitrite pl	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 2				1 1			
EP1814856-002	TRIP-1			2.5 mg/kg	107	70	130	
		EK059G: Nitrite + Nitrate as N (Sol.)		2.5 mg/kg	107	10	150	
· · · · · · · · · · · · · · · · · · ·	dahl Nitrogen By Discrete Analyser (QCLot: 2106553)				1			
EP1814856-002	TRIP-1	EK061G: Total Kjeldahl Nitrogen as N		500 mg/kg	99.3	70	130	
EK067G: Total Pho	sphorus as P by Discrete Analyser (QCLot: 2106552)							
EP1814856-002	TRIP-1	EK067G: Total Phosphorus as P		100 mg/kg	# 60.8	70	130	
EK071G: Reactive	Phosphorus as P by discrete analyser (QCLot: 21065	56)						
EP1814856-002	TRIP-1	EK071G: Reactive Phosphorus as P	14265-44-2	2.5 mg/kg	108	70	130	
= P080-SD / EP071-	SD: Total Petroleum Hydrocarbons (QCLot: 2106892)							
EP1814856-002	TRIP-1			32 mg/kg	73.9	70	130	
		EP080-SD: C6 - C9 Fraction		JZ IIIg/Kg	13.5	70	130	
	SD: Total Petroleum Hydrocarbons (QCLot: 2106896)							
EP1814856-002	TRIP-1	EP071-SD: C10 - C14 Fraction		252 mg/kg	111	70	130	
		EP071-SD: C15 - C28 Fraction		634 mg/kg	112	70	130	
		EP071-SD: C29 - C36 Fraction		99 mg/kg	93.6	70	130	
EP080-SD / EP071-	SD: Total Recoverable Hydrocarbons (QCLot: 210689)2)						
EP1814856-002	TRIP-1	EP080-SD: C6 - C10 Fraction	C6_C10	37 mg/kg	71.1	70	130	
EP080-SD / EP071-	SD: Total Recoverable Hydrocarbons (QCLot: 210689	96)						
EP1814856-002	TRIP-1	EP071-SD: >C10 - C16 Fraction		404 mg/kg	116	70	130	
		EP071-SD: >C16 - C34 Fraction		567 mg/kg	102	70	130	
		EP071-SD: >C34 - C40 Fraction		33 mg/kg	74.6	70	130	

Page	:11 of 11
Work Order	: EP1814856
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

ub-Matrix: SOIL				M	Matrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	.imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P080-SD: BTEXN	(QCLot: 2106892)						
P1814856-002	TRIP-1	EP080-SD: Benzene	71-43-2	2 mg/kg	87.2	70	130
		EP080-SD: Toluene	108-88-3	2 mg/kg	94.6	70	130
P090: Organotin	Compounds (QCLot: 2109384)						
P1814856-001	SPLIT-P1	EP090: Monobutyltin	78763-54-9	1.25 µgSn/kg	36.1	35	130
		EP090: DibutyItin	1002-53-5	1.25 µgSn/kg	121	20	130
		EP090: Tributyltin	56573-85-4	1.25 µgSn/kg	112	20	130
P132B: Polynucle	ear Aromatic Hydrocarbons (QCLot: 2106897)						
P1814856-002	TRIP-1	EP132B-SD: Naphthalene	91-20-3	25 µg/kg	104	70	130
		EP132B-SD: Acenaphthylene	208-96-8	25 µg/kg	76.5	70	130
		EP132B-SD: Acenaphthene	83-32-9	25 µg/kg	89.6	70	130
		EP132B-SD: Fluorene	86-73-7	25 µg/kg	87.9	70	130
		EP132B-SD: Phenanthrene	85-01-8	25 µg/kg	114	70	130
		EP132B-SD: Anthracene	120-12-7	25 µg/kg	104	70	130
		EP132B-SD: Fluoranthene	206-44-0	25 µg/kg	96.2	70	130
		EP132B-SD: Pyrene	129-00-0	25 µg/kg	101	70	130
		EP132B-SD: Benz(a)anthracene	56-55-3	25 µg/kg	86.6	70	130
		EP132B-SD: Chrysene	218-01-9	25 µg/kg	90.1	70	130
		EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	25 µg/kg	93.0	70	130
			205-82-3				
		EP132B-SD: Benzo(k)fluoranthene	207-08-9	25 µg/kg	88.4	70	130
		EP132B-SD: Benzo(a)pyrene	50-32-8	25 µg/kg	85.7	70	130
		EP132B-SD: Benzo(g.h.i)perylene	191-24-2	25 µg/kg	95.0	70	130
		EP132B-SD: Dibenz(a.h)anthracene	53-70-3	25 µg/kg	84.6	70	130
		EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	25 µg/kg	77.1	70	130
P202A: Phenoxya	acetic Acid Herbicides by LCMS (QCLot: 2108)	754)					
B1830936-003	Anonymous	EP202: Mecoprop	93-65-2	0.1 mg/kg	75.4	60	140
		EP202: MCPA	94-74-6	0.1 mg/kg	72.5	57	143
		EP202: 2.4-D	94-75-7	0.1 mg/kg	73.6	68	139
		EP202: Triclopyr	55335-06-3	0.1 mg/kg	94.2	51	145
		EP202: 2.4.5-T	93-76-5	0.1 mg/kg	78.3	57	142
		EP202: Picloram	1918-02-1	0.1 mg/kg	73.6	49	138
		EP202: Clopyralid	1702-17-6	0.1 mg/kg	55.1	49	149

QUALITY CONTROL REPORT

Work Order	: EP1900623	Page	: 1 of 22	
Client	: WA MARINE PTY LTD	Laboratory	: Environmental Division Pe	erth
Contact	: Claudio Deldeo	Contact	: Marnie Thomsett	
Address	: SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370 DUNSBOROUGH, PERTH WA, AUSTRALIA 6281	Address	: 26 Rigali Way Wangara W	/A Australia 6065
Telephone	:	Telephone	: 08 9406 1311	
Project	: 18WAU-0002 Mardie Project: Sediment Sampling	Date Samples Received	: 22-Jan-2019	
Order number	:	Date Analysis Commenced	: 22-Jan-2019	ALL
C-O-C number	:	Issue Date	: 08-Feb-2019	
Sampler	: Claudio Deldeo			Hac-MRA NATA
Site	:			
Quote number	: EP/1145/18			Accreditation No. 825
No. of samples received	: 29			Accredited for compliance with
No. of samples analysed	: 29			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Canhuang Ke	Inorganics Supervisor	Perth Inorganics, Wangara, WA
Chris Lemaitre	Laboratory Manager (Perth)	Perth Inorganics, Wangara, WA
Efua Wilson	Metals Chemist	Perth Inorganics, Wangara, WA
Franco Lentini		Sydney Organics, Smithfield, NSW
Indra Astuty	Instrument Chemist	Perth Inorganics, Wangara, WA
Leanne Carey	Acid Sulfate Soils Supervisor	Perth ASS, Wangara, WA
Minh Wills	2IC Organic Chemist	Brisbane Organics, Stafford, QLD
Vanessa Nguyen	Organic Chemist	Perth Organics, Wangara, WA

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

ub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
G035T: Total Reco	overable Mercury by FIN	/IS (Low Level) (QC Lot: 2158727)							
EP1900623-001	TRIP-2	EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	<0.01	0.00	No Limit
EP1900623-013	TB7	EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	<0.01	0.00	No Limit
EG035T: Total Reco	overable Mercury by FIN	/IS (Low Level) (QC Lot: 2158732)							
EP1900623-024	O2	EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	<0.01	0.00	No Limit
EA037: Ass Field S	creening Analysis (QC	Lot: 2159841)							
EP1900623-001	TRIP-2	EA037: pH (F)		0.1	pH Unit	8.4	8.4	0.00	0% - 20%
		EA037: pH (Fox)		0.1	pH Unit	7.7	7.5	2.62	0% - 20%
EP1900623-015	TB10	EA037: pH (F)		0.1	pH Unit	8.6	8.4	1.41	0% - 20%
		EA037: pH (Fox)		0.1	pH Unit	7.0	7.0	0.00	0% - 20%
EA055: Moisture Co	ntent (Dried @ 105-110	°C) (QC Lot: 2155443)							
EP1900623-007	TRIPB TBS521	EA055: Moisture Content		0.1	%	17.6	17.9	1.68	0% - 50%
EP1900698-006	Anonymous	EA055: Moisture Content		0.1	%	1.7	2.1	17.2	No Limit
EA055: Moisture Co	ntent (Dried @ 105-110	°C) (QC Lot: 2155895)							
EP1900623-001	TRIP-2	EA055: Moisture Content		0.1	%	28.8	27.0	6.42	0% - 20%
EP1900623-013	TB7	EA055: Moisture Content		0.1	%	35.4	34.8	1.72	0% - 20%
EA055: Moisture Co	ntent (Dried @ 105-110	°C) (QC Lot: 2155896)							
EP1900623-024	O2	EA055: Moisture Content		0.1	%	36.3	35.2	3.21	0% - 20%
EG005-SD: Total Me	tals in Sediments by IC	P-AES (QC Lot: 2158728)							
EP1900623-001	TRIP-2	EG005-SD: Aluminium	7429-90-5	50	mg/kg	11800	11600	1.44	0% - 20%
		EG005-SD: Iron	7439-89-6	50	mg/kg	44500	43500	2.37	0% - 20%
EP1900623-013	TB7	EG005-SD: Aluminium	7429-90-5	50	mg/kg	9520	9220	3.15	0% - 20%
		EG005-SD: Iron	7439-89-6	50	mg/kg	38200	36700	3.88	0% - 20%

Page	: 3 of 22
Work Order	: EP1900623
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	≱port		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EG005-SD: Total Met	tals in Sediments by ICP-AE	S (QC Lot: 2158731) - continued								
EP1900623-024	02	EG005-SD: Aluminium	7429-90-5	50	mg/kg	10700	10600	1.60	0% - 20%	
		EG005-SD: Iron	7439-89-6	50	mg/kg	41700	41600	0.327	0% - 20%	
EG020-SD: Total Me	tals in Sediments by ICPMS	(QC Lot: 2158729)								
EP1900623-001	TRIP-2	EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	0.00	No Limit	
		EG020-SD: Silver	7440-22-4	0.1	mg/kg	<0.1	<0.1	0.00	No Limit	
		EG020-SD: Antimony	7440-36-0	0.5	mg/kg	<0.50	<0.50	0.00	No Limit	
		EG020-SD: Cobalt	7440-48-4	0.5	mg/kg	11.2	10.9	2.48	0% - 20%	
		EG020-SD: Arsenic	7440-38-2	1	mg/kg	15.1	15.0	0.397	0% - 50%	
		EG020-SD: Chromium	7440-47-3	1	mg/kg	47.0	45.6	2.97	0% - 20%	
		EG020-SD: Copper	7440-50-8	1	mg/kg	17.7	17.4	1.68	0% - 50%	
		EG020-SD: Nickel	7440-02-0	1	mg/kg	23.7	23.4	1.57	0% - 20%	
		EG020-SD: Zinc	7440-66-6	1	mg/kg	28.7	28.5	0.896	0% - 20%	
		EG020-SD: Manganese	7439-96-5	10	mg/kg	271	269	0.800	0% - 20%	
		EG020-SD: Vanadium	7440-62-2	2	mg/kg	63.3	61.1	3.53	0% - 20%	
EP1900623-013	TB7	EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	0.00	No Limit	
		EG020-SD: Silver	7440-22-4	0.1	mg/kg	<0.1	<0.1	0.00	No Limit	
		EG020-SD: Antimony	7440-36-0	0.5	mg/kg	<0.50	<0.50	0.00	No Limit	
		EG020-SD: Cobalt	7440-48-4	0.5	mg/kg	10.5	9.5	10.0	0% - 20%	
		EG020-SD: Arsenic	7440-38-2	1	mg/kg	17.0	15.9	7.00	0% - 50%	
		EG020-SD: Chromium	7440-47-3	1	mg/kg	40.3	37.7	6.59	0% - 20%	
		EG020-SD: Copper	7440-50-8	1	mg/kg	12.5	11.5	8.90	0% - 50%	
		EG020-SD: Nickel	7440-02-0	1	mg/kg	20.0	18.6	7.06	0% - 50%	
		EG020-SD: Zinc	7440-66-6	1	mg/kg	24.6	23.1	6.17	0% - 20%	
		EG020-SD: Manganese	7439-96-5	10	mg/kg	264	252	4.28	0% - 20%	
		EG020-SD: Vanadium	7440-62-2	2	mg/kg	54.7	50.8	7.38	0% - 20%	
EG020-SD: Total Met	tals in Sediments by ICPMS	(QC Lot: 2158730)								
EP1900623-024	02	EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	0.00	No Limit	
		EG020-SD: Silver	7440-22-4	0.1	mg/kg	<0.1	<0.1	0.00	No Limit	
		EG020-SD: Antimony	7440-36-0	0.5	mg/kg	<0.50	<0.50	0.00	No Limit	
		EG020-SD: Cobalt	7440-48-4	0.5	mg/kg	11.6	11.1	4.29	0% - 20%	
		EG020-SD: Arsenic	7440-38-2	1	mg/kg	17.8	17.9	0.774	0% - 50%	
		EG020-SD: Chromium	7440-47-3	1	mg/kg	44.3	43.7	1.33	0% - 20%	
		EG020-SD: Copper	7440-50-8	1	mg/kg	13.5	13.3	1.68	0% - 50%	
		EG020-SD: Nickel	7440-02-0	1	mg/kg	21.8	21.7	0.00	0% - 20%	
		EG020-SD: Zinc	7440-66-6	1	mg/kg	27.8	26.8	3.41	0% - 20%	
		EG020-SD: Manganese	7439-96-5	10	mg/kg	284	273	3.93	0% - 20%	
		EG020-SD: Vanadium	7440-62-2	2	mg/kg	59.8	58.7	1.84	0% - 20%	
	N (QC Lot: 2161190)								1	
EP1900623-001	TRIP-2	EK055: Ammonia as N	7664-41-7	20	mg/kg	<20	<20	0.00	No Limit	
EP1900623-012	TB6	EK055: Ammonia as N EK055: Ammonia as N	7664-41-7	20	mg/kg	<20	<20	0.00	No Limit	

Page	: 4 of 22
Work Order	: EP1900623
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EK055: Ammonia as	s N (QC Lot: 2161191)								
EP1900623-024	02	EK055: Ammonia as N	7664-41-7	20	mg/kg	<20	<20	0.00	No Limit
EK057G: Nitrite as	N by Discrete Analyser	(QC Lot: 2161514)							
EP1900623-012	TB6	EK057G: Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EP1900623-001	TRIP-2	EK057G: Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EK057G: Nitrite as	N by Discrete Analyser	(QC Lot: 2161518)							
EP1900623-024	02	EK057G: Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EK059G: Nitrite plu	s Nitrate as N (NOx) by	Discrete Analyser (QC Lot: 2161516)							
EP1900623-012	TB6	EK059G: Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	0.2	0.1	0.00	No Limit
EP1900623-001	TRIP-2	EK059G: Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EK059G: Nitrite plu	s Nitrate as N (NOx) by	Discrete Analyser (QC Lot: 2161517)							
EP1900623-024	02	EK059G: Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EK061G: Total Kjelo	ahl Nitrogen By Discret	e Analyser (QC Lot: 2154658)							
EP1900623-001	TRIP-2	EK061G: Total Kjeldahl Nitrogen as N		20	mg/kg	310	330	3.95	0% - 50%
EP1900623-013	TB7	EK061G: Total Kjeldahl Nitrogen as N		20	mg/kg	360	390	9.48	0% - 50%
EK061G: Total Kjelo	ahl Nitrogen By Discret	e Analyser (QC Lot: 2154660)							
EP1900623-024	02	EK061G: Total Kjeldahl Nitrogen as N		20	mg/kg	500	440	12.6	0% - 20%
EK067G: Total Phos	sphorus as P by Discrete	Analyser (QC Lot: 2154657)							
EP1900623-001	TRIP-2	EK067G: Total Phosphorus as P		2	mg/kg	258	277	7.28	0% - 20%
EP1900623-013	TB7	EK067G: Total Phosphorus as P		2	mg/kg	282	324	14.0	0% - 20%
EK067G: Total Phos	sphorus as P by Discrete	e Analyser (QC Lot: 2154659)							
EP1900623-024	O2	EK067G: Total Phosphorus as P		2	mg/kg	321	289	10.4	0% - 20%
EK071G: Reactive F	Phosphorus as P by disc	rete analyser (QC Lot: 2161515)							
EP1900623-013	TB7	EK071G: Reactive Phosphorus as P	14265-44-2	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EP1900623-001	TRIP-2	EK071G: Reactive Phosphorus as P	14265-44-2	0.1	mg/kg	0.1	0.1	0.00	No Limit
EK071G: Reactive F	Phosphorus as P by disc	rete analyser (QC Lot: 2161519)							
EP1900623-024	02	EK071G: Reactive Phosphorus as P	14265-44-2	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EP003: Total Organ	ic Carbon (TOC) in Soil	(QC Lot: 2163031)							
EP1900623-001	TRIP-2	EP003: Total Organic Carbon		0.02	%	0.19	0.22	15.8	0% - 50%
EP1900623-015	TB10	EP003: Total Organic Carbon		0.02	%	0.26	0.27	0.00	0% - 50%
EP080-SD / EP071-S	D: Total Petroleum Hyd	rocarbons (QC Lot: 2151737)							
EP1900623-001	TRIP-2	EP080-SD: C6 - C9 Fraction		3	mg/kg	<3	<3	0.00	0% - 3%
EP1900623-013	ТВ7	EP080-SD: C6 - C9 Fraction		3	mg/kg	<3	<3	0.00	0% - 3%
EP080-SD / EP071-S	SD: Total Petroleum Hyd	rocarbons (QC Lot: 2151738)							
EP1900623-024	02	EP080-SD: C6 - C9 Fraction		3	mg/kg	<3	<3	0.00	0% - 3%
EP080-SD / EP071-S	D: Total Petroleum Hyd	rocarbons (QC Lot: 2151740)							
EP1900623-001	TRIP-2	EP071-SD: C10 - C14 Fraction		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: C15 - C28 Fraction		3	mg/kg	<3	<3	0.00	No Limit

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080-SD / EP071-9	SD: Total Petroleum Hy	vdrocarbons (QC Lot: 2151740) - continued							
EP1900623-001	TRIP-2	EP071-SD: C10 - C36 Fraction (sum)		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: C29 - C36 Fraction		5	mg/kg	<5	<5	0.00	No Limit
EP1900623-013	TB7	EP071-SD: C10 - C14 Fraction		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: C15 - C28 Fraction		3	mg/kg	4	3	0.00	No Limit
		EP071-SD: C10 - C36 Fraction (sum)		3	mg/kg	4	3	28.6	No Limit
		EP071-SD: C29 - C36 Fraction		5	mg/kg	<5	<5	0.00	No Limit
EP080-SD / EP071-	SD: Total Petroleum Hy	/drocarbons (QC Lot: 2151742)							
EP1900623-024	02	EP071-SD: C10 - C14 Fraction		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: C15 - C28 Fraction		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: C10 - C36 Fraction (sum)		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: C29 - C36 Fraction		5	mg/kg	<5	<5	0.00	No Limit
EP080-SD / EP071-	SD: Total Recoverable	Hydrocarbons (QC Lot: 2151737)							
EP1900623-001	TRIP-2	EP080-SD: C6 - C10 Fraction	C6 C10	3	mg/kg	<3	<3	0.00	0% - 3%
EP1900623-013	TB7	EP080-SD: C6 - C10 Fraction	 C6 C10	3	mg/kg	<3	<3	0.00	0% - 3%
EP080-SD / EP071-	SD: Total Recoverable	Hydrocarbons (QC Lot: 2151738)							
EP1900623-024	02	EP080-SD: C6 - C10 Fraction	C6 C10	3	mg/kg	<3	<3	0.00	0% - 3%
EP080-SD / EP071-	SD: Total Recoverable	Hydrocarbons (QC Lot: 2151740)							
EP1900623-001	TRIP-2	EP071-SD: >C10 - C16 Fraction		3	mg/kg	<3	<3	0.00	No Limit
2		EP071-SD: >C16 - C34 Fraction		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: >C10 - C40 Fraction (sum)		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: >C34 - C40 Fraction		5	mg/kg	<5	<5	0.00	No Limit
EP1900623-013	TB7	EP071-SD: >C10 - C16 Fraction		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: >C16 - C34 Fraction		3	mg/kg	7	5	43.6	No Limit
		EP071-SD: >C10 - C40 Fraction (sum)		3	mg/kg	7	5	33.3	No Limit
		EP071-SD: >C34 - C40 Fraction		5	mg/kg	<5	<5	0.00	No Limit
EP080-SD / EP071-	SD: Total Recoverable	Hydrocarbons (QC Lot: 2151742)							
EP1900623-024	02	EP071-SD: >C10 - C16 Fraction		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: >C16 - C34 Fraction		3	mg/kg	<3	4	35.0	No Limit
		EP071-SD: >C10 - C40 Fraction (sum)		3	mg/kg	<3	4	28.6	No Limit
		EP071-SD: >C34 - C40 Fraction		5	mg/kg	<5	<5	0.00	No Limit
EP080-SD: BTEXN	(QC Lot: 2151737)								
EP1900623-001	TRIP-2	EP080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: meta- & para-Xylene	108-38-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
			106-42-3						
		EP080-SD: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Total Xylenes		0.2	mg/kg	<0.5	<0.5	0.00	0%2%
		EP080-SD: Sum of BTEX		0.2	mg/kg	<0.2	<0.2	0.00	0%2%

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080-SD: BTEXN	(QC Lot: 2151737) - cor	ntinued							
EP1900623-001	TRIP-2	EP080-SD: Naphthalene	91-20-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
EP1900623-013	TB7	EP080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: meta- & para-Xylene	108-38-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
			106-42-3						
		EP080-SD: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Total Xylenes		0.2	mg/kg	<0.5	<0.5	0.00	0%2%
		EP080-SD: Sum of BTEX		0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Naphthalene	91-20-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
EP080-SD: BTEXN	(QC Lot: 2151738)								
EP1900623-024	02	EP080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2		
		EP080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2		
		EP080-SD: meta- & para-Xylene	108-38-3	0.2	mg/kg	<0.2	<0.2		
			106-42-3	•					
		EP080-SD: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Total Xylenes		0.2			<0.5		0%2%
		EP080-SD: Sum of BTEX		0.2				.2 0.00 0%2% .2 0.00 0%2% .2 0.00 0%2% .5 0.00 0%2% .2 0.00 0%2% .2 0.00 0%2% .2 0.00 0%2% .2 0.00 0%2% .5 0.00 No Limit	
		EP080-SD: Naphthalene	91-20-3	0.2		mg/kg <0.2 <0.2 0.00 0%2%			
EP090: Organotin C	Compounds (QC Lot: 21								
EP1900623-001	TRIP-2	EP090: Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5	<0.5	0.00	No Limit
			00010 00 4	0.0	pgoning	-0.0	-0.0	0.00	
	ar Aromatic Hydrocarbo		000.00.0					0.00	No. 1 Section
EP1900623-001	TRIP-2	EP132B-SD: Acenaphthylene	208-96-8	4	µg/kg	<4	<4		
		EP132B-SD: Acenaphthene	83-32-9	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Fluorene	86-73-7	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Phenanthrene	85-01-8	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Anthracene	120-12-7	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Fluoranthene	206-44-0	4	µg/kg	<4	-	0.00	No Limit
		EP132B-SD: Pyrene	129-00-0	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benz(a)anthracene	56-55-3	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Chrysene	218-01-9	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	4	µg/kg	<4	<4	0.00	No Limit
			205-82-3					0.00	Nie Lieste
		EP132B-SD: Benzo(k)fluoranthene	207-08-9	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(e)pyrene	192-97-2	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(a)pyrene	50-32-8	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Perylene	198-55-0	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	<4	0.00	No Limit

Page	: 7 of 22
Work Order	: EP1900623
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP132B: Polynuclea	ar Aromatic Hydrocarbo	ons (QC Lot: 2151739) - continued							
EP1900623-001	TRIP-2	EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Sum of PAHs		4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Naphthalene	91-20-3	5	µg/kg	<5	<5	0.00	No Limit
		EP132B-SD: 2-Methylnaphthalene	91-57-6	5	µg/kg	<5	<5	0.00	No Limit
		EP132B-SD: Coronene	191-07-1	5	µg/kg	<5	<5	0.00	No Limit
EP1900623-013	TB7	EP132B-SD: Acenaphthylene	208-96-8	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Acenaphthene	83-32-9	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Fluorene	86-73-7	4	µg/kg	<4	<4	0.00	No Limit
	EP132B-SD: Phenanthrene	85-01-8	4	µg/kg	<4	<4	0.00	No Limit	
		EP132B-SD: Anthracene	120-12-7	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Fluoranthene	206-44-0	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Pyrene	129-00-0	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benz(a)anthracene	56-55-3	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Chrysene	218-01-9	4	µg/kg	<4	<4	0.00	No Limit
	EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	4	µg/kg	<4	<4	0.00	No Limit	
			205-82-3						
		EP132B-SD: Benzo(k)fluoranthene	207-08-9	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(e)pyrene	192-97-2	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(a)pyrene	50-32-8	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Perylene	198-55-0	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Sum of PAHs		4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Naphthalene	91-20-3	5	µg/kg	<5	<5	0.00	No Limit
		EP132B-SD: 2-Methylnaphthalene	91-57-6	5	µg/kg	<5	<5	0.00	No Limit
		EP132B-SD: Coronene	191-07-1	5	µg/kg	<5	<5	0.00 0.00	No Limit
EP132B: Polynuclea	ar Aromatic Hydrocarbo								
EP1900623-024	02	EP132B-SD: Acenaphthylene	208-96-8	4	µg/kg	<4	<4	0.00	No Limit
2	-	EP132B-SD: Acenaphthene	83-32-9	4	µg/kg	<4	<4		No Limit
		EP132B-SD: Fluorene	86-73-7	4	µg/kg	<4	<4		No Limit
		EP132B-SD: Phenanthrene	85-01-8	4	µg/kg	<4	<4		No Limit
		EP132B-SD: Anthracene	120-12-7	4	µg/kg	<4	<4		No Limit
		EP132B-SD: Fluoranthene	206-44-0	4	µg/kg	<4	<4		No Limit
		EP132B-SD: Pyrene	129-00-0	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benz(a)anthracene	56-55-3	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Chrysene	218-01-9	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	4	μg/kg	<4	<4	0.00	No Limit
			205-99-2	r	P3/12			0.00	
		EP132B-SD: Benzo(k)fluoranthene	207-08-9	4	µg/kg	<4	<4	0.00	No Limit

Page	: 8 of 22
Work Order	: EP1900623
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Sub-Matrix: SOIL						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP132B: Polynuclea	r Aromatic Hydrocarbo	ons (QC Lot: 2151741) - continued							
EP1900623-024	02	EP132B-SD: Benzo(e)pyrene	192-97-2	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(a)pyrene	50-32-8	4	µg/kg	<4	<4	0.00	No Limit
		ydrocarbons (QC Lot: 2151741) - continued Image: Control of the second	No Limit						
		EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Sum of PAHs		4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Naphthalene	91-20-3	5	1 0 0 0 4 $\mu g/kg$ <4	No Limit			
		EP132B-SD: 2-Methylnaphthalene	91-57-6	5	µg/kg	<5	<5	0.00	No Limit
		EP132B-SD: Coronene	191-07-1	5	µg/kg	<5	<5	0.00	No Limit
EP202A: Phenoxyac	etic Acid Herbicides by	/ LCMS (QC Lot: 2154996)							
EP1900623-001	TRIP-2		122-88-3	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
			94-82-6	0.02		<0.02	<0.02	0.00	No Limit
			1918-00-9	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
			93-65-2	0.02		<0.02	<0.02	0.00	No Limit
			94-74-6	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
			120-36-5	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
			94-75-7	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
			55335-06-3	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: 2.4.5-TP (Silvex)	93-72-1	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: 2.4.5-T	93-76-5	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
			94-81-5	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: Picloram	1918-02-1	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: Clopyralid	1702-17-6	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
			69377-81-7	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
ub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		1
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	-			Recovery Limits (%
							Dupnoutoritouit	10 2 (70)	
EP1900615-009	Anonymous		7440-43-9	0.0001	mg/l	<0.0001	<0.0001	0.00	No Limit
	7 thonymous				•				No Limit
									No Limit
									No Limit
									No Limit
					•				No Limit
		•••			•				No Limit
									No Limit
									No Limit
		EG020A-T: Aluminium	7429-90-5	0.000	mg/L	<0.003	<0.003	0.00	No Limit
		EG020A-T: Vanadium	7429-50-5	0.01	mg/L	<0.01	<0.01	0.00	No Limit
			102-2	0.01	ing/L	-0.01	-0.01	0.00	

Page	: 9 of 22
Work Order	: EP1900623
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020T: Total Meta	Is by ICP-MS (QC Lo	t: 2160693) - continued			·				
EP1900623-006	RINS MET 1	EG020A-T: Aluminium	7429-90-5	0.01	mg/L	0.05	0.04	0.00	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	0.07	0.07	0.00	No Limit
EP1900623-006	RINS MET 1	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-T: Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.002	0.00	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Manganese	7439-96-5	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.00	No Limit
		EG020A-T: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
EG020T: Total Meta	Is by ICP-MS (QC Lo	t: 2160694)							
EP1900623-006	RINS MET 1	EG020B-T: Silver	7440-22-4	0.001	mg/L	<0.001	<0.001	0.00	No Limit
EG035T: Total Reco	overable Mercury by	FIMS (QC Lot: 2158881)							
EP1900623-006	RINS MET 1	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EP1900720-005	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EK055G: Ammonia	as N by Discrete Ana	lyser (QC Lot: 2151781)							
EP1900623-026	RINS MET 2	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.01	0.00	No Limit
EP1900650-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.01	0.02	0.00	No Limit
EK057G: Nitrite as	N by Discrete Analys	er (QC Lot: 2151972)			U				
EP1900623-026	RINS MET 2	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.00	No Limit
	_			0.01	iiig/E	0.01	-0.01	0.00	
EP1900623-026	RINS MET 2	by Discrete Analyser (QC Lot: 2151782)		0.01	mg/L	<0.01	<0.01	0.00	No Limit
EP1900650-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	9.69	9.55	1.45	0% - 20%
	-	EK059G: Nitrite + Nitrate as N		0.01	iiig/L	5.05	9.55	1.45	070-2078
		crete Analyser (QC Lot: 2153292)						10.0	
EP1900588-004	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	1.4	1.6	10.8	No Limit
		rete Analyser (QC Lot: 2153291)							
EP1900588-004	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.27	0.32	18.5	No Limit
EK071G: Reactive P	Phosphorus as P by d	liscrete analyser (QC Lot: 2151973)							
EP1900623-026	RINS MET 2	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
EP080/071: Total Pe	troleum Hydrocarbor	ns (QC Lot: 2151642)							
EP1900623-006	RINS MET 1	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.00	No Limit
EP080/07 <u>1: Total Re</u>	coverable <u>Hydrocark</u>	oons - NEPM 2013 Fractions (QC Lot: 2151642)							
EP1900623-006	RINS MET 1	EP080: C6 - C10 Fraction	C6 C10	20	µg/L	<20	<20	0.00	No Limit
EP080: BTEXN (QC					r S				
EP1900623-006	RINS MET 1	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.00	No Limit
		EP080: Benzene EP080: Toluene	108-88-3	2	μg/L	<2	<1	0.00	No Limit
			100-00-3	2	P9/L	~2	~2	0.00	

Page	: 10 of 22
Work Order	: EP1900623
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080: BTEXN (QC	Lot: 2151642) - continued								
EP1900623-006	RINS MET 1	EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
lethod: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
G035T: Total Recoverable Mercury by FIM	S (Low Level) (QCLot: 2158727	')							
G035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	2.154 mg/kg	109	80	120	
EG035T: Total Recoverable Mercury by FIM	S (Low Level) (QCLot: 2158732	2)							
EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	2.154 mg/kg	106	80	120	
G005-SD: Total Metals in Sediments by ICP	-AES (QCLot: 2158728)								
G005-SD: Aluminium	7429-90-5	50	mg/kg	<50					
G005-SD: Iron	7439-89-6	50	mg/kg	<50					
G005-SD: Total Metals in Sediments by ICP	-AES (QCLot: 2158731)								
G005-SD: Aluminium	7429-90-5	50	mg/kg	<50					
G005-SD: Iron	7439-89-6	50	mg/kg	<50					
EG020-SD: Total Metals in Sediments by ICP	MS (QCLot: 2158729)								
G020-SD: Antimony	7440-36-0	0.5	mg/kg	<0.50					
G020-SD: Arsenic	7440-38-2	1	mg/kg	<1.00	21.62091 mg/kg	109	74	130	
G020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	4.6838 mg/kg	105	97	11:	
G020-SD: Chromium	7440-47-3	1	mg/kg	<1.0	33.904 mg/kg	128	72	152	
G020-SD: Copper	7440-50-8	1	mg/kg	<1.0	33.782 mg/kg	99.6	76	116	
G020-SD: Cobalt	7440-48-4	0.5	mg/kg	<0.5					
G020-SD: Manganese	7439-96-5	10	mg/kg	<10					
G020-SD: Nickel	7440-02-0	1	mg/kg	<1.0	51.10088 mg/kg	113	81	135	
G020-SD: Silver	7440-22-4	0.1	mg/kg	<0.1					
G020-SD: Vanadium	7440-62-2	2	mg/kg	<2.0					
G020-SD: Zinc	7440-66-6	1	mg/kg	<1.0	61.70999 mg/kg	120	81	143	
G020-SD: Total Metals in Sediments by ICP	MS (QCLot: 2158730)								
G020-SD: Antimony	7440-36-0	0.5	mg/kg	<0.50					
G020-SD: Arsenic	7440-38-2	1	mg/kg	<1.00	21.62091 mg/kg	110	74	130	
G020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	4.6838 mg/kg	106	97	113	
G020-SD: Chromium	7440-47-3	1	mg/kg	<1.0	33.904 mg/kg	133	72	152	
G020-SD: Copper	7440-50-8	1	mg/kg	<1.0	33.782 mg/kg	102	76	116	
G020-SD: Cobalt	7440-48-4	0.5	mg/kg	<0.5					
G020-SD: Manganese	7439-96-5	10	mg/kg	<10					
G020-SD: Nickel	7440-02-0	1	mg/kg	<1.0	51.10088 mg/kg	115	81	13	
G020-SD: Silver	7440-22-4	0.1	mg/kg	<0.1					
G020-SD: Vanadium	7440-62-2	2	mg/kg	<2.0					
EG020-SD: Zinc	7440-66-6	1	mg/kg	<1.0	61.70999 mg/kg	118	81	143	

Page	: 12 of 22
Work Order	: EP1900623
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Nethod: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
K055: Ammonia as N (QCLot: 2161190) - continued								
K055: Ammonia as N	7664-41-7	20	mg/kg	<20	50 mg/kg	77.2	70	130
K055: Ammonia as N (QCLot: 2161191)								
K055: Ammonia as N	7664-41-7	20	mg/kg	<20	5 mg/kg	109	70	130
K057G: Nitrite as N by Discrete Analyser (QCLot: 2161514)								
K057G: Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1	2.5 mg/kg	100	89	121
K057G: Nitrite as N by Discrete Analyser (QCLot: 2161518)								
	14797-65-0	0.1	mg/kg	<0.1	2.5 mg/kg	101	89	121
K059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyse	(QCI of: 216	1516)						
K059G: Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	<0.1	2.5 mg/kg	101	90	112
K059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyse	(OCL of: 216	1517)	0.0					
K059G: Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	<0.1	2.5 mg/kg	101	90	112
	4. 24E4CE9)							
K061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLc K061G: Total Kjeldahl Nitrogen as N	01: 2154656)	20	mg/kg	<20	1000 mg/kg	86.2	78	112
total Neudali Nilogen as N		20	ing/ig	<20	100 mg/kg	73.4	70	130
K061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLc	+ 2454660)				5 5 5			
Koord: Total Kjeldahl Nitrogen as N	01. 2154660)	20	mg/kg	<20	1000 mg/kg	86.8	78	112
Koore. Total Kjeldani Milogen as N		20	ing/ig	<20	100 mg/kg	85.5	70	130
K067G: Total Phosphorus as P by Discrete Analyser (QCLo	+- 2154657)				55			
K007G: Total Phosphorus as P by Discrete Analyser (QCLO K067G: Total Phosphorus as P		2	mg/kg	<2	440 mg/kg	94.4	78	108
Roord. Total Phospholus as P		-	ingrig	<2	44 mg/kg	79.1	70	130
K067G: Total Phosphorus as P by Discrete Analyser (QCLo	+. 2154659)							
K067G: Total Phosphorus as P by Discrete Analyser (QCL0 K067G: Total Phosphorus as P	L. 2154659)	2	mg/kg	<2	440 mg/kg	94.3	78	108
		-		<2	44 mg/kg	70.7	70	130
K071G: Reactive Phosphorus as P by discrete analyser (QC	1 of: 2161515)							
	14265-44-2	0.1	mg/kg	<0.1	2.5 mg/kg	97.7	92	112
K071G: Reactive Phosphorus as P by discrete analyser (QC K071G: Reactive Phosphorus as P	14265-44-2	0.1	mg/kg	<0.1	2.5 mg/kg	96.1	92	112
	14200 44 2	0.1	mg/kg	-0.1	2.0 mg/kg	00.1	52	112
P003: Total Organic Carbon (TOC) in Soil (QCLot: 2163031)		0.02	%	<0.02	0.44 %	87.0	70	130
P003: Total Organic Carbon		0.02	/0	-v.uz	0.77 /0	07.0	10	150
P080-SD / EP071-SD: Total Petroleum Hydrocarbons (QCLo	t: 2151737)	2	m = // =		20 mm	107	70	400
P080-SD: C6 - C9 Fraction		3	mg/kg	<3	32 mg/kg	107	70	130
P080-SD / EP071-SD: Total Petroleum Hydrocarbons (QCLo								
P080-SD: C6 - C9 Fraction		3	mg/kg	<3	32 mg/kg	110	70	130
P080-SD / EP071-SD: Total Petroleum Hydrocarbons (QCLo	t: 2151740)							
P071-SD: C10 - C14 Fraction		3	mg/kg	<3	252 mg/kg	102	70	130
P071-SD: C15 - C28 Fraction		3	mg/kg	<3	634 mg/kg	99.7	70	130

Page	: 13 of 22
Work Order	: EP1900623
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
Method: Compound		LOR		Report	Spike	Spike Recovery (%)	Recovery Limits (%)	
	CAS Number		Unit	Result	Concentration	LCS	Low	High
EP080-SD / EP071-SD: Total Petroleum Hydrocarb	ons (QCLot: 2151740) - c	ontinued						
EP071-SD: C29 - C36 Fraction		5	mg/kg	<5	99 mg/kg	92.0	70	130
EP071-SD: C10 - C36 Fraction (sum)		3	mg/kg	<3				
EP080-SD / EP071-SD: Total Petroleum Hydrocarb	ons (QCLot: 2151742)							
EP071-SD: C10 - C14 Fraction		3	mg/kg	<3	252 mg/kg	111	70	130
EP071-SD: C15 - C28 Fraction		3	mg/kg	<3	634 mg/kg	112	70	130
EP071-SD: C29 - C36 Fraction		5	mg/kg	<5	99 mg/kg	94.9	70	130
EP071-SD: C10 - C36 Fraction (sum)		3	mg/kg	<3				
EP080-SD / EP071-SD: Total Recoverable Hydroca	arbons (QCLot: 2151737)							
EP080-SD: C6 - C10 Fraction	C6_C10	3	mg/kg	<3	37 mg/kg	111	70	130
EP080-SD / EP071-SD: Total Recoverable Hydroca	arbons (QCLot: 2151738)							
EP080-SD: C6 - C10 Fraction	C6 C10	3	mg/kg	<3	37 mg/kg	113	70	130
EP080-SD / EP071-SD: Total Recoverable Hydroca	_							
EP071-SD: >C10 - C16 Fraction		3	mg/kg	<3	404 mg/kg	103	70	130
EP071-SD: >C16 - C34 Fraction		3	mg/kg	<3	567 mg/kg	92.5	70	130
EP071-SD: >C34 - C40 Fraction		5	mg/kg	<5	33 mg/kg	97.9	70	130
EP071-SD: >C10 - C40 Fraction (sum)		3	mg/kg	<3				
EP080-SD / EP071-SD: Total Recoverable Hydroca	arbons (QCLot: 2151742)		5 5					
EP071-SD: >C10 - C16 Fraction		3	mg/kg	<3	404 mg/kg	115	70	130
EP071-SD: >C16 - C34 Fraction		3	mg/kg	<3	567 mg/kg	103	70	130
EP071-SD: >C34 - C40 Fraction		5	mg/kg	<5	33 mg/kg	83.7	70	130
EP071-SD: >C10 - C40 Fraction (sum)		3	mg/kg	<3				
EP080-SD: BTEXN (QCLot: 2151737)								
P080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	2 mg/kg	105	70	130
P080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	2 mg/kg	112	70	130
P080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	2 mg/kg	115	70	130
EP080-SD: meta- & para-Xylene	108-38-3	0.2	mg/kg	<0.2	4 mg/kg	115	70	130
	106-42-3							
P080-SD: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	2 mg/kg	109	70	130
P080-SD: Total Xylenes		0.2	mg/kg	<0.2				
EP080-SD: Sum of BTEX		0.2	mg/kg	<0.2				
EP080-SD: Naphthalene	91-20-3	0.2	mg/kg	<0.2	0.5 mg/kg	100	70	130
EP080-SD: BTEXN (QCLot: 2151738)								
P080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	2 mg/kg	107	70	130
EP080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	2 mg/kg	115	70	130
EP080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	2 mg/kg	115	70	130
EP080-SD: meta- & para-Xylene	108-38-3	0.2	mg/kg	<0.2	4 mg/kg	116	70	130
	106-42-3							
EP080-SD: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	2 mg/kg	111	70	130

Page	: 14 of 22
Work Order	: EP1900623
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS		
Method: Compound				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080-SD: BTEXN (QCLot: 2151738) - continued								
EP080-SD: Total Xylenes		0.2	mg/kg	<0.2				
EP080-SD: Sum of BTEX		0.2	mg/kg	<0.2				
EP080-SD: Naphthalene	91-20-3	0.2	mg/kg	<0.2	0.5 mg/kg	108	70	130
EP090: Organotin Compounds (QCLot: 2153396)								
EP090: Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5	1.25 µgSn/kg	95.4	52	139
EP132B: Polynuclear Aromatic Hydrocarbons(Q	CLot: 2151739)							
EP132B-SD: Naphthalene	91-20-3	5	µg/kg	<5	25 µg/kg	83.8	55	131
P132B-SD: 2-Methylnaphthalene	91-57-6	5	µg/kg	<5				
EP132B-SD: Acenaphthylene	208-96-8	4	µg/kg	<4	25 µg/kg	88.5	64	110
EP132B-SD: Acenaphthene	83-32-9	4	μg/kg	<4	25 µg/kg	82.3	62	112
EP132B-SD: Fluorene	86-73-7	4	µg/kg	<4	25 µg/kg	89.1	64	118
EP132B-SD: Phenanthrene	85-01-8	4	µg/kg	<4	25 µg/kg	94.5	59	117
EP132B-SD: Anthracene	120-12-7	4	µg/kg	<4	25 µg/kg	95.4	69	111
EP132B-SD: Fluoranthene	206-44-0	4	µg/kg	<4	25 µg/kg	94.9	66	118
P132B-SD: Pyrene	129-00-0	4	µg/kg	<4	25 µg/kg	94.1	70	116
EP132B-SD: Benz(a)anthracene	56-55-3	4	µg/kg	<4	25 µg/kg	94.7	59	121
EP132B-SD: Chrysene	218-01-9	4	µg/kg	<4	25 µg/kg	85.3	68	116
EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	4	µg/kg	<4	25 µg/kg	96.7	51	107
	205-82-3							
EP132B-SD: Benzo(k)fluoranthene	207-08-9	4	µg/kg	<4	25 µg/kg	102	52	118
EP132B-SD: Benzo(e)pyrene	192-97-2	4	µg/kg	<4				
EP132B-SD: Benzo(a)pyrene	50-32-8	4	µg/kg	<4	25 µg/kg	99.9	55	111
EP132B-SD: Perylene	198-55-0	4	µg/kg	<4				
EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4	25 µg/kg	83.1	62	106
EP132B-SD: Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	25 µg/kg	96.2	35	141
EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	25 µg/kg	105	48	122
EP132B-SD: Coronene	191-07-1	5	µg/kg	<5				
EP132B-SD: Sum of PAHs		4	µg/kg	<4				
EP132B: Polynuclear Aromatic Hydrocarbons (Q	CLot: 2151741)							
EP132B-SD: Naphthalene	91-20-3	5	µg/kg	<5	25 µg/kg	87.2	55	131
EP132B-SD: 2-Methylnaphthalene	91-57-6	5	µg/kg	<5				
EP132B-SD: Acenaphthylene	208-96-8	4	µg/kg	<4	25 µg/kg	89.4	64	110
EP132B-SD: Acenaphthene	83-32-9	4	µg/kg	<4	25 µg/kg	89.2	62	112
EP132B-SD: Fluorene	86-73-7	4	µg/kg	<4	25 µg/kg	93.0	64	118
EP132B-SD: Phenanthrene	85-01-8	4	µg/kg	<4	25 µg/kg	83.8	59	117
EP132B-SD: Anthracene	120-12-7	4	µg/kg	<4	25 µg/kg	83.0	69	111
EP132B-SD: Fluoranthene	206-44-0	4	µg/kg	<4	25 µg/kg	97.4	66	118
EP132B-SD: Pyrene	129-00-0	4	µg/kg	<4	25 µg/kg	110	70	116

Page	: 15 of 22
Work Order	: EP1900623
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
P132B: Polynuclear Aromatic Hydrocarbons (QCL	.ot: 2151741) - continue	d						
EP132B-SD: Benz(a)anthracene	56-55-3	4	µg/kg	<4	25 µg/kg	82.3	59	121
P132B-SD: Chrysene	218-01-9	4	µg/kg	<4	25 µg/kg	93.9	68	116
EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	4	µg/kg	<4	25 µg/kg	98.0	51	107
	205-82-3							
P132B-SD: Benzo(k)fluoranthene	207-08-9	4	µg/kg	<4	25 µg/kg	79.2	52	118
P132B-SD: Benzo(e)pyrene	192-97-2	4	µg/kg	<4				
EP132B-SD: Benzo(a)pyrene	50-32-8	4	µg/kg	<4	25 µg/kg	69.3	55	111
P132B-SD: Perylene	198-55-0	4	µg/kg	<4				
EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4	25 µg/kg	66.3	62	106
P132B-SD: Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	25 µg/kg	54.2	35	141
EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	25 µg/kg	63.4	48	122
EP132B-SD: Coronene	191-07-1	5	µg/kg	<5				
EP132B-SD: Sum of PAHs		4	µg/kg	<4				
EP202A: Phenoxyacetic Acid Herbicides by LCMS (QCLot: 2154996)							
EP202: 4-Chlorophenoxy acetic acid	122-88-3	0.02	mg/kg	<0.02	0.1 mg/kg	66.2	54	128
P202: 2.4-DB	94-82-6	0.02	mg/kg	<0.02	0.1 mg/kg	93.9	46	130
P202: Dicamba	1918-00-9	0.02	mg/kg	<0.02	0.1 mg/kg	60.2	52	135
P202: Mecoprop	93-65-2	0.02	mg/kg	<0.02	0.1 mg/kg	79.8	60	130
EP202: MCPA	94-74-6	0.02	mg/kg	<0.02	0.1 mg/kg	71.0	57	131
EP202: 2.4-DP	120-36-5	0.02	mg/kg	<0.02	0.1 mg/kg	118	50	141
EP202: 2.4-D	94-75-7	0.02	mg/kg	<0.02	0.1 mg/kg	71.0	69	131
P202: Triclopyr	55335-06-3	0.02	mg/kg	<0.02	0.1 mg/kg	93.0	51	141
EP202: 2.4.5-TP (Silvex)	93-72-1	0.02	mg/kg	<0.02	0.1 mg/kg	81.5	41	126
EP202: 2.4.5-T	93-76-5	0.02	mg/kg	<0.02	0.1 mg/kg	88.8	57	139
EP202: MCPB	94-81-5	0.02	mg/kg	<0.02	0.1 mg/kg	64.3	39	137
P202: Picloram	1918-02-1	0.02	mg/kg	<0.02	0.1 mg/kg	63.9	49	129
EP202: Clopyralid	1702-17-6	0.02	mg/kg	<0.02	0.1 mg/kg	60.2	49	106
EP202: Fluroxypyr	69377-81-7	0.02	mg/kg	<0.02	0.1 mg/kg	67.1	53	128
								1
Sub-Matrix: WATER				Method Blank (MB) Report	0	Laboratory Control Spike (LCS		1 : :4- (0/)
	CAS Number	LOR	Unit		Spike	Spike Recovery (%)	Recovery	· · ·
Method: Compound	CAS Number	LUK	Unit	Result	Concentration	LCS	Low	High
G020T: Total Metals by ICP-MS (QCLot: 2160693)								4.5.5
G020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	102	84	120
G020A-T: Antimony	7440-36-0	0.001	mg/L	< 0.001	0.02 mg/L	99.4	83	120
EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	101	85	120
G020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	98.8	84	120
G020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	96.7	85	120
EG020A-T: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	101	84	120

Page	: 16 of 22
Work Order	: EP1900623
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020T: Total Metals by ICP-MS(QCLot: 2160693)- conti	nued							
EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	98.2	83	120
EG020A-T: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	101	85	120
EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	96.9	83	120
EG020A-T: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	99.1	86	120
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	99.1	84	120
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	99.5	77	120
EG020T: Total Metals by ICP-MS (QCLot: 2160694)								
EG020B-T: Silver	7440-22-4	0.001	mg/L	<0.001	0.02 mg/L	104	52	120
EG035T: Total Recoverable Mercury by FIMS (QCLot: 215	8881)							
EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	104	87	115
EK055G: Ammonia as N by Discrete Analyser (QCLot: 215	1781)							1
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	92.4	87	115
					g			
EK057G: Nitrite as N by Discrete Analyser (QCLot: 215197 EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	102	86	112
			IIIg/L	40.01	0.0 mg/L	102	00	112
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analy				10.01	0.5	05.0	00	110
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	95.6	92	112
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QC	Lot: 2153292)							
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	89.6	82	110
EK067G: Total Phosphorus as P by Discrete Analyser (QC	Lot: 2153291)							
K067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	88.5	70	130
EK071G: Reactive Phosphorus as P by discrete analyser (QCLot: 2151973)							
EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	102	87	115
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLo	t: 2151720)							
EP075(SIM): Naphthalene	91-20-3	1	μg/L	<1.0	10 µg/L	44.3	42	99
EP075(SIM): Acenaphthylene	208-96-8	1	μg/L	<1.0	10 µg/L	48.2	36	113
EP075(SIM): Acenaphthene	83-32-9	1	μg/L	<1.0	10 µg/L	46.4	36	102
EP075(SIM): Fluorene	86-73-7	1	μg/L	<1.0	10 µg/L	49.4	34	113
EP075(SIM): Phenanthrene	85-01-8	1	µg/L	<1.0	10 µg/L	58.2	37	115
EP075(SIM): Anthracene	120-12-7	1	µg/L	<1.0	10 µg/L	51.8	46	109
EP075(SIM): Fluoranthene	206-44-0	1	μg/L	<1.0	10 µg/L	60.6	40	124
EP075(SIM): Pyrene	129-00-0	1	μg/L	<1.0	10 µg/L	61.9	40	123
EP075(SIM): Benz(a)anthracene	56-55-3	1	μg/L	<1.0	10 µg/L	53.4	40	126
EP075(SIM): Chrysene	218-01-9	1	μg/L	<1.0	10 µg/L	58.6	46	121
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	1	μg/L	<1.0	10 µg/L	51.9	43	123
	205-82-3							
EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	μg/L	<1.0	10 µg/L	51.6	47	121
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	10 µg/L	57.1	45	123

Page	: 17 of 22
Work Order	: EP1900623
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons(C	QCLot: 2151720) - co	ntinued							
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	µg/L	<1.0	10 µg/L	59.8	39	120	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	µg/L	<1.0	10 µg/L	58.5	39	119	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	µg/L	<1.0	10 µg/L	58.5	40	123	
EP075(SIM): Sum of polycyclic aromatic hydrocarbons		0.5	µg/L	<0.5					
EP080/071: Total Petroleum Hydrocarbons (QCLot: 2	151642)								
EP080: C6 - C9 Fraction		20	µg/L	<20	320 µg/L	110	74	113	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 2	151721)								
EP071: C10 - C14 Fraction		50	µg/L	<50	385 µg/L	60.0	35	95	
P071: C15 - C28 Fraction		100	µg/L	<100	385 µg/L	71.5	34	111	
EP071: C29 - C36 Fraction		50	µg/L	<50	380 µg/L	71.5	34	105	
EP080/071: Total Recoverable Hydrocarbons - NEPM	2013 Fractions (QCL	ot: 2151642)							
EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	370 µg/L	113	74	115	
EP080/071: Total Recoverable Hydrocarbons - NEPM	2013 Fractions (QCL	ot: 2151721)							
EP071: >C10 - C16 Fraction		100	µg/L	<100	398 µg/L	63.4	37	99	
P071: >C16 - C34 Fraction		100	µg/L	<100	597 µg/L	70.4	35	108	
EP071: >C34 - C40 Fraction		100	µg/L	<100	168 µg/L	67.9	11	117	
EP080: BTEXN (QCLot: 2151642)									
EP080: Benzene	71-43-2	1	µg/L	<1	20 µg/L	108	84	114	
P080: Toluene	108-88-3	2	µg/L	<2	20 µg/L	108	81	115	
P080: Ethylbenzene	100-41-4	2	µg/L	<2	20 µg/L	106	84	113	
P080: meta- & para-Xylene	108-38-3	2	µg/L	<2	40 µg/L	104	84	114	
	106-42-3								
EP080: ortho-Xylene	95-47-6	2	µg/L	<2	20 µg/L	102	87	111	
EP080: Naphthalene	91-20-3	5	µg/L	<5	5 µg/L	95.3	77	118	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

sub-Matrix: SOIL		Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery L	.imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG035T: Total Re	coverable Mercury by FIMS (Low Level) (QCLot: 215872	7)					
EP1900623-002	TRIP-3	EG035T-LL: Mercury	7439-97-6	10 mg/kg	96.7	70	130
EG035T: Total Re	coverable Mercury by FIMS (Low Level) (QCLot: 215873	2)					
EP1900623-025	03	EG035T-LL: Mercury	7439-97-6	10 mg/kg	93.8	70	130
EG005-SD: Total N	etals in Sediments by ICP-AES (QCLot: 2158728)						

ub-Matrix: SOIL			M				
	1			Spike	SpikeRecovery(%)	Recovery L	
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G005-SD: Total M	etals in Sediments by ICP-AES (QCLot: 21)	58728) - continued					
P1900623-002	TRIP-3	EG005-SD: Aluminium	7429-90-5	50 mg/kg	# Not	70	130
					Determined		
		EG005-SD: Iron	7439-89-6	50 mg/kg	# Not	70	130
					Determined		
G005-SD: Total M	etals in Sediments by ICP-AES (QCLot: 21	58731)					
EP1900623-025	03	EG005-SD: Aluminium	7429-90-5	50 mg/kg	# Not	70	130
					Determined		
		EG005-SD: Iron	7439-89-6	50 mg/kg	# Not	70	130
					Determined		
G020-SD: Total M	etals in Sediments by ICPMS (QCLot: 2158	729)					
EP1900623-002	TRIP-3	EG020-SD: Arsenic	7440-38-2	50 mg/kg	96.3	70	130
		EG020-SD: Cadmium	7440-43-9	50 mg/kg	97.4	70	130
		EG020-SD: Chromium	7440-47-3	50 mg/kg	99.1	70	130
		EG020-SD: Copper	7440-50-8	50 mg/kg	91.0	70	130
	EG020-SD: Nickel	7440-02-0	50 mg/kg	88.8	70	130	
		EG020-SD: Zinc	7440-66-6	50 mg/kg	98.7	70	130
G020-SD: Total M	etals in Sediments by ICPMS (QCLot: 2158	730)					
EP1900623-025	03	EG020-SD: Arsenic	7440-38-2	50 mg/kg	98.2	70	130
		EG020-SD: Cadmium	7440-43-9	50 mg/kg	97.2	70	130
		EG020-SD: Chromium	7440-47-3	50 mg/kg	96.7	70	130
		EG020-SD: Copper	7440-50-8	50 mg/kg	90.8	70	130
		EG020-SD: Nickel	7440-02-0	50 mg/kg	90.9	70	130
		EG020-SD: Zinc	7440-66-6	50 mg/kg	95.1	70	130
K055: Ammonia a	s N (QCLot: 2161190)						
EP1900623-002	TRIP-3	EK055: Ammonia as N	7664-41-7	50 mg/kg	112	70	130
K055: Ammonia a	s N (QCLot: 2161191)				1		1
EP1900623-025	03	EK055: Ammonia as N	7664-41-7	50 mg/kg	78.3	70	130
		ER055. Animonia as N	1004 41 1	oo mg/kg	10.0	10	100
	N by Discrete Analyser (QCLot: 2161514)						
EP1900623-002	TRIP-3	EK057G: Nitrite as N (Sol.)	14797-65-0	2.5 mg/kg	98.4	70	130
K057G: Nitrite as	N by Discrete Analyser (QCLot: 2161518)						
EP1900623-025	O3	EK057G: Nitrite as N (Sol.)	14797-65-0	2.5 mg/kg	105	70	130
K059G: Nitrite pl	us Nitrate as N (NOx) by Discrete Analyser	(QCLot: 2161516)					
EP1900623-002	TRIP-3	EK059G: Nitrite + Nitrate as N (Sol.)		2.5 mg/kg	95.5	70	130
	us Nitrate as N (NOx) by Discrete Analyser			- 5 5		-	
	O3	EK059G: Nitrite + Nitrate as N (Sol.)		0.5 mm///	104	70	100
EP1900623-025		EKOEOC: Nitrite Nitrete ee N (Col.)		2.5 mg/kg	104	70	130

Page	: 19 of 22
Work Order	: EP1900623
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

ub-Matrix: SOIL				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery L	imits (%)	
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
K061G: Total Kj	eldahl Nitrogen By Discrete Analyser (QCLot: 2154658)	- continued						
EP1900623-002	TRIP-3	EK061G: Total Kjeldahl Nitrogen as N		500 mg/kg	110	70	130	
K061G: Total Kj	eldahl Nitrogen By Discrete Analyser (QCLot: 2154660)							
EP1900623-025	03	EK061G: Total Kjeldahl Nitrogen as N		500 mg/kg	81.5	70	130	
K067G: Total Ph	osphorus as P by Discrete Analyser (QCLot: 2154657)							
EP1900623-002	TRIP-3	EK067G: Total Phosphorus as P		100 mg/kg	88.3	70	130	
EK067G: Total Ph	osphorus as P by Discrete Analyser (QCLot: 2154659)							
EP1900623-025	03	EK067G: Total Phosphorus as P		100 mg/kg	88.2	70	130	
	e Phosphorus as P by discrete analyser (QCLot: 21615							
EP1900623-002	TRIP-3	EK071G: Reactive Phosphorus as P	14265-44-2	2.5 mg/kg	98.4	70	130	
	Phosphorus as P by discrete analyser (QCLot: 21615		11200 11 2	2.0 mg/ng	00.1	10	100	
EP1900623-025			14265-44-2	2.5 mg/kg	99.4	70	130	
		EK071G: Reactive Phosphorus as P	14205-44-2	2.5 mg/kg	99.4	70	130	
	1-SD: Total Petroleum Hydrocarbons (QCLot: 2151737)						100	
EP1900623-002	TRIP-3	EP080-SD: C6 - C9 Fraction		32 mg/kg	71.8	70	130	
	1-SD: Total Petroleum Hydrocarbons (QCLot: 2151738)							
EP1900623-025	03	EP080-SD: C6 - C9 Fraction		32 mg/kg	72.2	70	130	
EP080-SD / EP07'	1-SD: Total Petroleum Hydrocarbons (QCLot: 2151740)							
EP1900623-002	TRIP-3	EP071-SD: C10 - C14 Fraction		252 mg/kg	105	70	130	
		EP071-SD: C15 - C28 Fraction		634 mg/kg	105	70	130	
		EP071-SD: C29 - C36 Fraction		99 mg/kg	87.3	70	130	
EP080-SD / EP07'	1-SD: Total Petroleum Hydrocarbons (QCLot: 2151742)							
EP1900623-025	03	EP071-SD: C10 - C14 Fraction		252 mg/kg	102	70	130	
		EP071-SD: C15 - C28 Fraction		634 mg/kg	97.5	70	130	
		EP071-SD: C29 - C36 Fraction		99 mg/kg	88.8	70	130	
EP080-SD / EP07	1-SD: Total Recoverable Hydrocarbons (QCLot: 215173	7)						
EP1900623-002	TRIP-3	EP080-SD: C6 - C10 Fraction	C6_C10	37 mg/kg	70.6	70	130	
EP080-SD / EP07 [,]	1-SD: Total Recoverable Hydrocarbons (QCLot: 215173	8)						
EP1900623-025	03	EP080-SD: C6 - C10 Fraction	C6_C10	37 mg/kg	70.4	70	130	
EP080-SD / E <u>P07'</u>	I-SD: Total Recoverable Hydrocarbons (QCLot: 215174	0)						
EP1900623-002	TRIP-3	EP071-SD: >C10 - C16 Fraction		404 mg/kg	109	70	130	
		EP071-SD: >C16 - C34 Fraction		567 mg/kg	95.4	70	130	
		EP071-SD: >C34 - C40 Fraction		33 mg/kg	74.9	70	130	
EP080-SD / EP07'	1-SD: Total Recoverable Hydrocarbons (QCLot: 215174	2)						
EP1900623-025	03	EP071-SD: >C10 - C16 Fraction		404 mg/kg	102	70	130	
		EP071-SD: >C16 - C34 Fraction		567 mg/kg	90.2	70	130	

Page	: 20 of 22
Work Order	: EP1900623
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Sub-Matrix: SOIL				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery L	.imits (%)	
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
P080-SD / EP071-	-SD: Total Recoverable Hydrocarbons (QCL	.ot: 2151742) - continued						
P1900623-025	03	EP071-SD: >C34 - C40 Fraction		33 mg/kg	92.6	70	130	
P080-SD: BTEXN	(QCLot: 2151737)						1	
P1900623-002	TRIP-3	EP080-SD: Benzene	71-43-2	2 mg/kg	93.0	70	130	
		EP080-SD: Toluene	108-88-3	2 mg/kg	101	70	130	
DANA OD. DTEVN	(QCLot: 2151738)							
			74,40,0	0	00.5	70	100	
P1900623-025	03	EP080-SD: Benzene	71-43-2	2 mg/kg	90.5	70	130	
		EP080-SD: Toluene	108-88-3	2 mg/kg	94.9	70	130	
P090: Organotin	Compounds (QCLot: 2153396)							
P1900623-002	TRIP-3	EP090: Tributyltin	56573-85-4	1.25 µgSn/kg	98.5	20	130	
P132B: Polynucle	ear Aromatic Hydrocarbons (QCLot: 215173	9)						
P1900623-002	TRIP-3	EP132B-SD: Naphthalene	91-20-3	25 µg/kg	122	70	130	
	EP132B-SD: Acenaphthylene	208-96-8	25 µg/kg	90.7	70	130		
		EP132B-SD: Acenaphthene	83-32-9	25 µg/kg	94.2	70	130	
	EP132B-SD: Fluorene	86-73-7	25 µg/kg	95.5	70	130		
		EP132B-SD: Phenanthrene	85-01-8	25 µg/kg	123	70	130	
		EP132B-SD: Anthracene	120-12-7	25 µg/kg	81.5	70	130	
		EP132B-SD: Fluoranthene	206-44-0	25 µg/kg	120	70	130	
		EP132B-SD: Pyrene	129-00-0	25 µg/kg	116	70	130	
		EP132B-SD: Benz(a)anthracene	56-55-3	25 µg/kg	116	70	130	
		EP132B-SD: Chrysene	218-01-9	25 µg/kg	82.8	70	130	
		EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	25 µg/kg	90.8	70	130	
			205-82-3					
		EP132B-SD: Benzo(k)fluoranthene	207-08-9	25 µg/kg	81.9	70	130	
		EP132B-SD: Benzo(a)pyrene	50-32-8	25 µg/kg	102	70	130	
		EP132B-SD: Benzo(g.h.i)perylene	191-24-2	25 µg/kg	92.0	70	130	
		EP132B-SD: Dibenz(a.h)anthracene	53-70-3	25 µg/kg	92.3	70	130	
		EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	25 µg/kg	107	70	130	
P132B: Polynucle	ear Aromatic Hydrocarbons (QCLot: 215174	1)						
P1900623-025	03	EP132B-SD: Naphthalene	91-20-3	25 µg/kg	74.7	70	130	
		EP132B-SD: Acenaphthylene	208-96-8	25 µg/kg	95.9	70	130	
		EP132B-SD: Acenaphthene	83-32-9	25 µg/kg	96.7	70	130	
		EP132B-SD: Fluorene	86-73-7	25 µg/kg	103	70	130	
		EP132B-SD: Phenanthrene	85-01-8	25 µg/kg	102	70	130	
		EP132B-SD: Anthracene	120-12-7	25 µg/kg	96.9	70	130	
		EP132B-SD: Fluoranthene	206-44-0	25 µg/kg	126	70	130	
		EP132B-SD: Pyrene	129-00-0	25 µg/kg	108	70	130	
		EP132B-SD: Benz(a)anthracene	56-55-3	25 µg/kg	83.6	70	130	
		EP132B-SD: Chrysene	218-01-9	25 µg/kg	71.0	70	130	

ub-Matrix: SOIL				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	.imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P132B: Polynucl	lear Aromatic Hydrocarbons (QCLot: 2151741) - continued					
EP1900623-025	03	EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	25 µg/kg	81.3	70	130
			205-82-3				
		EP132B-SD: Benzo(k)fluoranthene	207-08-9	25 µg/kg	74.6	70	130
		EP132B-SD: Benzo(a)pyrene	50-32-8	25 µg/kg	106	70	130
		EP132B-SD: Benzo(g.h.i)perylene	191-24-2	25 µg/kg	89.6	70	130
		EP132B-SD: Dibenz(a.h)anthracene	53-70-3	25 µg/kg	72.6	70	130
		EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	25 µg/kg	76.3	70	130
EP202A: Phenoxy	vacetic Acid Herbicides by LCMS (QCLot: 2154	4996)					
EP1900623-001	TRIP-2	EP202: Mecoprop	93-65-2	0.1 mg/kg	78.7	60	140
		EP202: MCPA	94-74-6	0.1 mg/kg	75.3	57	143
		EP202: 2.4-D	94-75-7	0.1 mg/kg	75.6	68	139
		EP202: Triclopyr	55335-06-3	0.1 mg/kg	92.1	51	145
		EP202: 2.4.5-T	93-76-5	0.1 mg/kg	88.7	57	142
		EP202: Picloram	1918-02-1	0.1 mg/kg	75.0	49	138
		EP202: Clopyralid	1702-17-6	0.1 mg/kg	68.2	49	149
ub-Matrix: WATER				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG020T: Total Me	tals by ICP-MS (QCLot: 2160693)						
EP1900671-001	Anonymous	EG020A-T: Arsenic	7440-38-2	1 mg/L	117	70	130
		EG020A-T: Cadmium	7440-43-9	0.25 mg/L	118	70	130
		EG020A-T: Chromium	7440-47-3	1 mg/L	109	70	130
	132B: Polynuclear Aromatic Hydrocarbons (QCLot: 21517) 1900623-025 O3 202A: Phenoxyacetic Acid Herbicides by LCMS (QCLot: 27) 1900623-001 TRIP-2 -Matrix: WATER oratory sample ID Client sample ID 020T: Total Metals by ICP-MS (QCLot: 2160693) '1900671-001 Anonymous 035T: Total Recoverable Mercury by FIMS (QCLot: 215886) '1900623-026 RINS MET 2 055G: Ammonia as N by Discrete Analyser (QCLot: 21517)	EG020A-T: Cobalt	7440-48-4	1 mg/L	118	70	130
		EG020A-T: Copper	7440-50-8	1 mg/L	114	70	130
		EG020A-T: Manganese	7439-96-5	1 mg/L	116	70	130
		EG020A-T: Nickel	7440-02-0	1 mg/L	112	70	130
		EG020A-T: Vanadium	7440-62-2	1 mg/L	110	70	130
		EG020A-T: Zinc	7440-66-6	1 mg/L	118	70	130
EG035T: Total Re	ecoverable Mercury by FIMS (QCLot: 2158881)						
EP1900623-026		EG035T: Mercury	7439-97-6	0.01 mg/L	109	70	130
EK055G: Ammoni	a as N by Discrete Analyser (QCLot: 2151781)						
EP1900625-001		EK055G: Ammonia as N	7664-41-7	1 mg/L	89.6	70	130
				i ing/E	00.0	10	100
ED1000623 006	RINS MET 1	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	105	70	130
LF 1900023-000							
	lus Nitrate as N (NOx) by Discrete Analyser(QCLot: 2151782)					

Page	: 22 of 22
Work Order	: EP1900623
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Sub-Matrix: WATER			Γ	Ма	ntrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EK061G: Total Kje	ldahl Nitrogen By Discrete Analyser (QCLot: 2153292)						
EP1900588-004	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		25 mg/L	97.6	70	130
EK067G: Total Ph	osphorus as P by Discrete Analyser (QCLot: 2153291)						
EP1900588-004	Anonymous	EK067G: Total Phosphorus as P		5 mg/L	114	70	130
EK071G: Reactive	Phosphorus as P by discrete analyser (QCLot: 2151973)					
EP1900623-006	RINS MET 1	EK071G: Reactive Phosphorus as P	14265-44-2	0.5 mg/L	102	70	130
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 2151642)						
EP1900623-027	RINS VOL 2	EP080: C6 - C9 Fraction		240 µg/L	88.9	77	137
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions(QCL	.ot: 2151642)					
EP1900623-027	RINS VOL 2	EP080: C6 - C10 Fraction	C6_C10	290 µg/L	77.1	77	137
EP080: BTEXN (Q	CLot: 2151642)						
EP1900623-027	RINS VOL 2	EP080: Benzene	71-43-2	20 µg/L	99.2	77	122
		EP080: Toluene	108-88-3	20 µg/L	98.9	74	126

QUALITY CONTROL REPORT

Work Order	: EP1902034	Page	: 1 of 11	
Client		Laboratory	: Environmental Division Pe	erth
Contact	: Claudio Deldeo	Contact	: Marnie Thomsett	
Address	: SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370 DUNSBOROUGH, PERTH WA, AUSTRALIA 6281	Address	: 26 Rigali Way Wangara W	/A Australia 6065
Telephone	:	Telephone	: 08 9406 1311	
Project	: 18WAU-0002 Mardie Project: Sediment Sampling	Date Samples Received	: 06-Mar-2019	
Order number	:	Date Analysis Commenced	: 07-Mar-2019	
C-O-C number	:	Issue Date	: 14-Mar-2019	NATA
Sampler	:			Iac-MRA NATA
Site	:			
Quote number	: EP/1145/18			Accreditation No. 825
No. of samples received	: 9			Accreditation No. 825
No. of samples analysed	: 8			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Canhuang Ke	Inorganics Supervisor	Perth Inorganics, Wangara, WA	
Chris Lemaitre	Laboratory Manager (Perth)	Perth Inorganics, Wangara, WA	
Daniel Fisher	Inorganics Analyst	Perth ASS, Wangara, WA	
Dianne Blane	Laboratory Coordinator (2IC)	Newcastle - Inorganics, Mayfield West, NSW	
Efua Wilson	Metals Chemist	Perth Inorganics, Wangara, WA	
Franco Lentini		Sydney Organics, Smithfield, NSW	
Indra Astuty	Instrument Chemist	Perth Inorganics, Wangara, WA	
Kim McCabe	Senior Inorganic Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD	
Santusha Pandra	Organic Chemist	Brisbane Organics, Stafford, QLD	
Vanessa Nguyen	Organic Chemist	Perth Organics, Wangara, WA	

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

- CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
- LOR = Limit of reporting
- RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

ub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
EG005(ED093)-SD: ⁻	Total Metals in Sedimen	ts by ICP-AES (QC Lot: 2226450)							
EP1902034-002	RF2	EG005-SD: Aluminium	7429-90-5	50	mg/kg	7840	8110	3.38	0% - 20%
		EG005-SD: Iron	7439-89-6	50	mg/kg	36000	34100	5.32	0% - 20%
EG035T: Total Rec	overable Mercury by FIN	/IS (Low Level) (QC Lot: 2226449)							
EP1902034-002	RF2	EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	<0.01	0.00	No Limit
EA026 : Chromium	Reducible Sulfur (QC L	ot: 2232756)							
EP1902034-002	RF2	EA026: Chromium Reducible Sulphur		0.005	%	0.023	0.024	0.00	No Limit
EA037: Ass Field S	creening Analysis (QC	Lot: 2232780)							
EP1902034-002	RF2	EA037: pH (F)		0.1	pH Unit	8.0	7.9	1.76	0% - 20%
		EA037: pH (Fox)		0.1	pH Unit	7.0	7.0	0.00	0% - 20%
EA055: Moisture Co	ontent (Dried @ 105-110	°C) (QC Lot: 2221515)							
EP1901980-001	Anonymous	EA055: Moisture Content		0.1	%	0.9	0.8	0.00	No Limit
EG020-SD: Total Me	etals in Sediments by IC	PMS (QC Lot: 2226451)							
EP1902034-002	RF2	EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	0.1	<0.1	0.00	No Limit
		EG020-SD: Silver	7440-22-4	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
		EG020-SD: Antimony	7440-36-0	0.5	mg/kg	<0.50	<0.50	0.00	No Limit
		EG020-SD: Cobalt	7440-48-4	0.5	mg/kg	8.3	7.9	4.62	0% - 50%
		EG020-SD: Arsenic	7440-38-2	1	mg/kg	23.8	19.6	19.6	0% - 20%
		EG020-SD: Chromium	7440-47-3	1	mg/kg	31.2	32.0	2.78	0% - 20%
		EG020-SD: Copper	7440-50-8	1	mg/kg	8.2	8.3	1.51	No Limit
		EG020-SD: Nickel	7440-02-0	1	mg/kg	14.1	14.0	1.23	0% - 50%
		EG020-SD: Zinc	7440-66-6	1	mg/kg	16.7	17.0	1.46	0% - 50%
		EG020-SD: Manganese	7439-96-5	10	mg/kg	291	354	19.3	0% - 20%
		EG020-SD: Vanadium	7440-62-2	2	mg/kg	44.7	42.3	5.51	0% - 20%

Page	: 3 of 11
Work Order	: EP1902034
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report	1 	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EK055: Ammonia a	as N (QC Lot: 2221495	i) - continued							
EP1901901-005	Anonymous	EK055: Ammonia as N	7664-41-7	20	mg/kg	720	730	0.00	0% - 20%
EK057G: Nitrite as	N by Discrete Analys	er (QC Lot: 2221520)							
EP1902034-002	RF2	EK057G: Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EK059G: Nitrite pl	us Nitrate as N (NOx)	by Discrete Analyser (QC Lot: 2221522)							
EP1902034-002	RF2	EK059G: Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	0.1	0.3	83.1	No Limit
EK061G: Total Kjel	dahl Nitrogen By Disc	rete Analyser (QC Lot: 2227872)							
EP1902034-002	RF2	EK061G: Total Kjeldahl Nitrogen as N		20	mg/kg	380	440	13.1	0% - 20%
EK067G: Total Pho	sphorus as P by Disc	rete Analyser (QC Lot: 2227871)							
EP1902034-002	RF2	EK067G: Total Phosphorus as P		2	mg/kg	466	417	11.2	0% - 20%
EK071G: Reactive	Phosphorus as P by d	liscrete analyser (QC Lot: 2221521)					1		
EP1902034-002	RF2	EK071G: Reactive Phosphorus as P	14265-44-2	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EP003: Total Orga	nic Carbon (TOC) in So	•							
EB1905698-001	Anonymous	EP003: Total Organic Carbon		0.02	%	1.04	1.01	2.67	0% - 20%
EB1905698-011	Anonymous	EP003: Total Organic Carbon		0.02	%	2.25	2.30	2.27	0% - 20%
EP080/071: Total P	etroleum Hydrocarboi	ns (QC Lot: 2221904)							
EP1902034-008	TBS36	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total R	ecoverable Hvdrocarb	oons - NEPM 2013 Fractions (QC Lot: 2221904)							
EP1902034-008	TBS36	EP080: C6 - C10 Fraction	C6 C10	10	mg/kg	<10	<10	0.00	No Limit
EP080: BTEXN (Q	C Lot: 2221904)		_						
EP1902034-008	TBS36	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit
	SD: Total Petroleum H	lydrocarbons (QC Lot: 2221903)							
EP1902034-002	RF2	EP080-SD: C6 - C9 Fraction		3	mg/kg	<3	<3	0.00	0% - 3%
EP080-SD / EP071-	SD: Total Petroleum H	lydrocarbons (QC Lot: 2221905)							
EP1902034-002	RF2	EP071-SD: C10 - C14 Fraction		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: C15 - C28 Fraction		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: C10 - C36 Fraction (sum)		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: C29 - C36 Fraction		5	mg/kg	<5	<5	0.00	No Limit
		e Hydrocarbons (QC Lot: 2221903)							
EP1902034-002	RF2	EP080-SD: C6 - C10 Fraction	C6_C10	3	mg/kg	<3	<3	0.00	0% - 3%
		Hydrocarbons (QC Lot: 2221905)							
EP1902034-002	RF2	EP071-SD: >C10 - C16 Fraction		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: >C16 - C34 Fraction		3	mg/kg	<3	<3	0.00	No Limit

ub-Matrix: SOIL						Laboratory	Duplicate (DOI) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
P080-SD / EP071-S	SD: Total Recoverable H	Hydrocarbons (QC Lot: 2221905) - continued							
EP1902034-002	RF2	EP071-SD: >C10 - C40 Fraction (sum)		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: >C34 - C40 Fraction		5	mg/kg	<5	<5	0.00	No Limit
P080-SD: BTEXN	(QC Lot: 2221903)								
EP1902034-002	D: Total Recoverable Hydrocerbons (CC Lot: 2221905)	0%2%							
			108-88-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
			100-41-4	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
			108-38-3	0.2	mg/kg	<0.2	<0.2	RPD (%) <3	0%2%
		EP080-SD: ortho-Xylene		0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		·		0.2	mg/kg	<0.5	<0.5	0.00	0%2%
				0.2	mg/kg	<0.2	<0.2	0.00	0%2%
			91-20-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
P090: Organotin C	ompounds (QC Lot: 22	·							
P1902034-002			56573-85-4	0.5	uaSn/ka	<0.5	<0.5	0.00	No Limit
	1412								No Limit
				-					No Limit
D420D, Delumueles	A vomotio Lludvo opviku		1002 00 0	•	pgoning		.,	0.00	
			000.00.0					0.00	N I a 1 facto
P1902034-002	RF2	· · ·							No Limit
		· · · · · · · · · · · · · · · · · · ·							No Limit
				-					No Limit
									No Limit
									No Limit
				-		-			No Limit
									No Limit
		EP132B-SD: Benz(a)anthracene							No Limit
		EP132B-SD: Chrysene							No Limit
		EP132B-SD: Benzo(b+j)fluoranthene		4	µg/kg	<4	6	36.8	No Limit
		EP132B-SD: Benzo(k)fluoranthene							No Limit
		EP132B-SD: Benzo(e)pyrene							No Limit
		EP132B-SD: Benzo(a)pyrene							No Limit
		EP132B-SD: Perylene		-	µg/kg				No Limit
		EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Dibenz(a.h)anthracene							No Limit
		EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5		µg/kg				No Limit
		EP132B-SD: Sum of PAHs			µg/kg				No Limit
		EP132B-SD: Naphthalene	91-20-3	5	µg/kg	<5	<5	0.00	No Limit
		EP132B-SD: 2-Methylnaphthalene	91-57-6	5	µg/kg	<5	<5	0.00	No Limit
		EP132B-SD ⁻ Coronene	191-07-1	5	µg/kg	<5	<5	0.00	No Limit

Page	: 5 of 11
Work Order	: EP1902034
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Sub-Matrix: SOIL						Laboratory D	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP202A: Phenoxya	cetic Acid Herbicides by	y LCMS (QC Lot: 2223949) - continued							
EP1901901-005	Anonymous	EP202: 4-Chlorophenoxy acetic acid	122-88-3	0.02	mg/kg	<0.04	<0.04	0.00	No Limit
		EP202: 2.4-DB	94-82-6	0.02	mg/kg	<0.04	<0.04	0.00	No Limit
		EP202: Dicamba	1918-00-9	0.02	mg/kg	<0.04	<0.04	0.00	No Limit
		EP202: Mecoprop	93-65-2	0.02	mg/kg	<0.04	<0.04	0.00	No Limit
		EP202: MCPA	94-74-6	0.02	mg/kg	<0.04	<0.04	0.00	No Limit
		EP202: 2.4-DP	120-36-5	0.02	mg/kg	<0.04	<0.04	0.00	No Limit
		EP202: 2.4-D	94-75-7	0.02	mg/kg	<0.04	<0.04	0.00	No Limit
		EP202: Triclopyr	55335-06-3	0.02	mg/kg	<0.04	<0.04	0.00	No Limit
		EP202: 2.4.5-TP (Silvex)	93-72-1	0.02	mg/kg	<0.04	<0.04	0.00	No Limit
		EP202: 2.4.5-T	93-76-5	0.02	mg/kg	<0.04	<0.04	0.00	No Limit
		EP202: MCPB	94-81-5	0.02	mg/kg	<0.04	<0.04	0.00	No Limit
		EP202: Picloram	1918-02-1	0.02	mg/kg	<0.04	<0.04	0.00	No Limit
		EP202: Clopyralid	1702-17-6	0.02	mg/kg	<0.04	<0.04	0.00	No Limit
		EP202: Fluroxypyr	69377-81-7	0.02	mg/kg	<0.04	<0.04	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Construint Construint <thconstruint< th=""> Construint Construi</thconstruint<>	Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS	oratory Control Spike (LCS) Report		
Second ED003JSD: Total Motals in Sediments by ICP-AES (QCLot: 2226450) GG005 SD: Inon 7429405 50 mg/kg 450					Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
SG005.50: Aurminum 7429-00-5 50 mg/kg 450	Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
Call Description T439-89-6 50 mg/kg <50 mg/kg <50 me me me me GG035T: Total Recovarable Marcury by FIMS (Low Level) (GCL01: 222449) 7439-78-0 0.01 mg/kg <0.01	EG005(ED093)-SD: Total Metals in Sediments by	ICP-AES (QCLot: 2226450)							
Construction Construction<	EG005-SD: Aluminium	7429-90-5	50	mg/kg	<50					
EG03ST-LL: Mercury 7439-97-6 0.01 mg/kg <0.01 2.154 mg/kg 104 80 12 EA025 Chromium Reducible Sulfur (QCLot: 2232756)	EG005-SD: Iron	7439-89-6	50	mg/kg	<50					
EA026 : Chromium Reducible Sulfur (QCLot: 223256) Second Sec	EG035T: Total Recoverable Mercury by FIMS (Lo	ow Level) (QCLot: 2226449)							
EA028: Chromium Reducible Sulphur 0.005 % <0.005	EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	2.154 mg/kg	104	80	120	
EA028: Chromium Reducible Sulphur 0.005 % <0.005	EA026 : Chromium Reducible Sulfur (QCLot: 22	32756)								
EG020-SD: Antimony 7440-38-0 0.5 mg/kg <0.50 Mg/kg <0.10 21 6209 mg/kg 1001 97 11 E6020-SD: Cdontium 7440-43-3 1 mg/kg <0.0	·		0.005	%	<0.005	0.202 %	96.8	70	130	
EG020-SD: Antimony 7440-38-0 0.5 mg/kg <0.50 m	EG020-SD: Total Metals in Sediments by ICPMS	(QCLot: 2226451)								
E6020-SD: Arsenic 7440-38-2 1 mg/kg <1.00			0.5	mg/kg	<0.50					
G020-SD. Chromium 7440-47-3 1 mg/kg <1.0 42.22 mg/kg 95.9 72 15 G020-SD. Copper 7440-50-8 1 mg/kg <1.0		7440-38-2	1	mg/kg	<1.00	21.62091 mg/kg	102	74	130	
Copper 7440-50-8 1 mg/kg <1.0 33.782 mg/kg 84.3 76 11 EG020-SD: Cobalt 7440-48-4 0.5 mg/kg <0.5	EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	4.6838 mg/kg	101	97	113	
G020-SD: Cobalt 7440-48-4 0.5 mg/kg <0.5 <td>EG020-SD: Chromium</td> <td>7440-47-3</td> <td>1</td> <td>mg/kg</td> <td><1.0</td> <td>42.22 mg/kg</td> <td>95.9</td> <td>72</td> <td>152</td>	EG020-SD: Chromium	7440-47-3	1	mg/kg	<1.0	42.22 mg/kg	95.9	72	152	
Construction T439-96-5 10 mg/kg <10	EG020-SD: Copper	7440-50-8	1	mg/kg	<1.0	33.782 mg/kg	84.3	76	116	
Construction Construction<	EG020-SD: Cobalt	7440-48-4	0.5	mg/kg	<0.5					
Construction Construction<	EG020-SD: Manganese	7439-96-5	10	mg/kg	<10					
Cools Solver Mg/kg <2.0	EG020-SD: Nickel	7440-02-0	1	mg/kg	<1.0	51.10088 mg/kg	114	81	13	
Construction Construction<	EG020-SD: Silver	7440-22-4	0.1	mg/kg	<0.1					
EX050: Numonia as N QCLot: 2221495) EK055: Ammonia as N 7664-41-7 20 mg/kg <20	EG020-SD: Vanadium	7440-62-2	2	mg/kg	<2.0					
EK055: Ammonia as N 7664-41-7 20 mg/kg <20 50 mg/kg 93.6 70 13 EK057G: Nitrite as N by Discrete Analyser (QCLot: 2221520) 14797-65-0 0.1 mg/kg <0.1	EG020-SD: Zinc	7440-66-6	1	mg/kg	<1.0	61.70999 mg/kg	103	81	143	
EX057G: Nitrite as N by Discrete Analyser (QCLot: 2221520) Id 797-65-0 0.1 mg/kg <0.1 2.5 mg/kg 97.5 89 12 EX057G: Nitrite as N (Sol.) 14797-65-0 0.1 mg/kg <0.1	EK055: Ammonia as N (QCLot: 2221495)									
EK057G: Nitrite as N (Sol.) 14797-65-0 0.1 mg/kg <0.1	EK055: Ammonia as N	7664-41-7	20	mg/kg	<20	50 mg/kg	93.6	70	130	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 2221522) mg/kg <0.1 mg/kg <0.1 2.5 mg/kg 96.4 90 11 EK059G: Nitrite + Nitrate as N (Sol.) 0.1 mg/kg <0.1	EK057G: Nitrite as N by Discrete Analyser (QCL	_ot: 2221520)								
EK059G: Nitrite + Nitrate as N (Sol.) 0.1 mg/kg <0.1	EK057G: Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1	2.5 mg/kg	97.5	89	121	
EK059G: Nitrite + Nitrate as N (Sol.) 0.1 mg/kg <0.1	EK059G: Nitrite plus Nitrate as N (NOx) by Disc	rete Analyser (QCLot: 222	1522)							
EK061G: Total Kjeldahl Nitrogen as N 20 mg/kg <20				mg/kg	<0.1	2.5 mg/kg	96.4	90	112	
EK061G: Total Kjeldahl Nitrogen as N 20 mg/kg <20	EK061G: Total Kieldahl Nitrogen By Discrete An	alvser (QCI of: 2227872)								
EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 2227871) 2 mg/kg <2 440 mg/kg 81.0 78 10 EK067G: Total Phosphorus as P 2 mg/kg <2			20	mg/kg	<20	1000 mg/kg	85.1	78	112	
EK067G: Total Phosphorus as P 2 mg/kg <2					<20	100 mg/kg	91.8	70	130	
EK067G: Total Phosphorus as P 2 mg/kg <2	EK067G: Total Phosphorus as P by Discrete Ana	alvser (QCLot: 2227871)								
EK071G: Reactive Phosphorus as P by discrete analyser (QCLot: 2221521)			2	mg/kg	<2	440 mg/kg	81.0	78	108	
									130	
	EK071G: Reactive Phosphorus as P by discrete	analyser (QCLot: 2221521)								
				mg/kg	<0.1	2.5 mg/kg	96.9	92	112	

Page	: 7 of 11
Work Order	: EP1902034
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Sub-Matrix: SOIL			Method Blank (MB)		Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Nethod: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
P003: Total Organic Carbon (TOC) in Soil (Q0	CLot: 2229484) - continued							
P003: Total Organic Carbon		0.02	%	<0.02	1.94 %	90.1	70	130
P080/071: Total Petroleum Hydrocarbons (Q0	CLot: 2221904)							
P080: C6 - C9 Fraction		10	mg/kg	<10	32 mg/kg	91.4	66	122
P080/071: Total Recoverable Hydrocarbons -	NEPM 2013 Fractions (QCLc	ot: 2221904)						
P080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	37 mg/kg	88.0	66	122
P080: BTEXN (QCLot: 2221904)								
P080: Benzene	71-43-2	0.2	mg/kg	<0.2	2 mg/kg	89.9	72	122
P080: Toluene	108-88-3	0.5	mg/kg	<0.5	2 mg/kg	95.9	75	119
P080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	2 mg/kg	93.2	73	121
P080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	4 mg/kg	91.9	74	122
	106-42-3							
P080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	2 mg/kg	89.1	75	121
P080: Naphthalene	91-20-3	1	mg/kg	<1	0.5 mg/kg	121	64	126
P080-SD / EP071-SD: Total Petroleum Hydroc	arbons (QCLot: 2221903)							
P080-SD: C6 - C9 Fraction		3	mg/kg	<3	32 mg/kg	105	70	130
P080-SD / EP071-SD: Total Petroleum Hydroc	arbons (QCLot: 2221905)							
P071-SD: C10 - C14 Fraction		3	mg/kg	<3	252 mg/kg	86.3	70	130
P071-SD: C15 - C28 Fraction		3	mg/kg	<3	634 mg/kg	84.2	70	130
P071-SD: C29 - C36 Fraction		5	mg/kg	<5	99 mg/kg	77.6	70	130
P071-SD: C10 - C36 Fraction (sum)		3	mg/kg	<3				
P080-SD / EP071-SD: Total Recoverable Hydr	ocarbons (QCLot: 2221903)							
P080-SD: C6 - C10 Fraction	C6_C10	3	mg/kg	<3	37 mg/kg	104	70	130
P080-SD / EP071-SD: Total Recoverable Hydr	ocarbons (QCLot: 2221905)							
P071-SD: >C10 - C16 Fraction		3	mg/kg	<3	404 mg/kg	87.2	70	130
P071-SD: >C16 - C34 Fraction		3	mg/kg	<3	567 mg/kg	78.4	70	130
P071-SD: >C34 - C40 Fraction		5	mg/kg	<5	33 mg/kg	72.3	70	130
P071-SD: >C10 - C40 Fraction (sum)		3	mg/kg	<3				
P080-SD: BTEXN (QCLot: 2221903)								
P080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	2 mg/kg	122	70	130
P080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	2 mg/kg	106	70	130
P080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	2 mg/kg	106	70	130
P080-SD: meta- & para-Xylene	108-38-3	0.2	mg/kg	<0.2	4 mg/kg	106	70	130
	106-42-3							
P080-SD: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	2 mg/kg	103	70	130
P080-SD: Total Xylenes		0.2	mg/kg	<0.2				
P080-SD: Sum of BTEX		0.2	mg/kg	<0.2				
P080-SD: Naphthalene	91-20-3	0.2	mg/kg	<0.2	0.5 mg/kg	102	70	130

Page	: 8 of 11
Work Order	: EP1902034
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Sub-Matrix: SOIL			Method Blank (MB)		Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
P090: Organotin Compounds (QCLot: 2222229))							
P090: Monobutyltin	78763-54-9	1	µgSn/kg	<1	1.25 µgSn/kg	# 182	36	128
EP090: Dibutyltin	1002-53-5	1	µgSn/kg	<1	1.25 µgSn/kg	# 145	42	132
EP090: Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5	1.25 µgSn/kg	95.7	52	139
EP132B: Polynuclear Aromatic Hydrocarbons(C	CLot: 2221906)							
P132B-SD: Naphthalene	91-20-3	5	µg/kg	<5	25 µg/kg	78.9	55	131
P132B-SD: 2-Methylnaphthalene	91-57-6	5	µg/kg	<5				
P132B-SD: Acenaphthylene	208-96-8	4	µg/kg	<4	25 µg/kg	76.3	64	110
P132B-SD: Acenaphthene	83-32-9	4	µg/kg	<4	25 µg/kg	77.8	62	112
P132B-SD: Fluorene	86-73-7	4	µg/kg	<4	25 µg/kg	75.0	64	118
P132B-SD: Phenanthrene	85-01-8	4	µg/kg	<4	25 µg/kg	87.8	59	117
P132B-SD: Anthracene	120-12-7	4	µg/kg	<4	25 µg/kg	72.4	69	111
P132B-SD: Fluoranthene	206-44-0	4	µg/kg	<4	25 µg/kg	87.0	66	118
P132B-SD: Pyrene	129-00-0	4	µg/kg	<4	25 µg/kg	86.0	70	116
P132B-SD: Benz(a)anthracene	56-55-3	4	µg/kg	<4	25 µg/kg	60.5	59	121
P132B-SD: Chrysene	218-01-9	4	µg/kg	<4	25 µg/kg	108	68	116
P132B-SD: Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	<4	25 µg/kg	73.8	51	107
P132B-SD: Benzo(k)fluoranthene	207-08-9	4	µg/kg	<4	25 µg/kg	100	52	118
P132B-SD: Benzo(e)pyrene	192-97-2	4	µg/kg	<4				
P132B-SD: Benzo(a)pyrene	50-32-8	4	µg/kg	<4	25 µg/kg	59.6	55	111
P132B-SD: Perylene	198-55-0	4	µg/kg	<4				
P132B-SD: Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4	25 µg/kg	76.6	62	106
P132B-SD: Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	25 µg/kg	42.2	35	141
P132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	25 µg/kg	58.9	48	122
P132B-SD: Coronene	191-07-1	5	µg/kg	<5				
EP132B-SD: Sum of PAHs		4	µg/kg	<4				
EP202A: Phenoxyacetic Acid Herbicides by LCM	S (QCLot: 2223949)							
P202: 4-Chlorophenoxy acetic acid	122-88-3	0.02	mg/kg	<0.02	0.1 mg/kg	71.5	54	128
P202: 2.4-DB	94-82-6	0.02	mg/kg	<0.02	0.1 mg/kg	104	46	130
EP202: Dicamba	1918-00-9	0.02	mg/kg	<0.02	0.1 mg/kg	73.4	52	135
P202: Mecoprop	93-65-2	0.02	mg/kg	<0.02	0.1 mg/kg	88.0	60	130
:P202: MCPA	94-74-6	0.02	mg/kg	<0.02	0.1 mg/kg	77.4	57	131
:P202: 2.4-DP	120-36-5	0.02	mg/kg	<0.02	0.1 mg/kg	116	50	141
:P202: 2.4-D	94-75-7	0.02	mg/kg	<0.02	0.1 mg/kg	84.9	69	131
P202: Triclopyr	55335-06-3	0.02	mg/kg	<0.02	0.1 mg/kg	109	51	141
P202: 2.4.5-TP (Silvex)	93-72-1	0.02	mg/kg	<0.02	0.1 mg/kg	111	41	126
P202: 2.4.5-T	93-76-5	0.02	mg/kg	<0.02	0.1 mg/kg	104	57	139
EP202: MCPB	94-81-5	0.02	mg/kg	<0.02	0.1 mg/kg	81.0	39	137
EP202: Picloram	1918-02-1	0.02	mg/kg	<0.02	0.1 mg/kg	64.1	49	129

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
			Report	Spike	Spike Recovery (%) Recove		rery Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP202A: Phenoxyacetic Acid Herbicides	by LCMS(QCLot: 2223949) - co	ontinued						
EP202: Clopyralid	1702-17-6	0.02	mg/kg	<0.02	0.1 mg/kg	69.2	49	106
EP202: Fluroxypyr	69377-81-7	0.02	mg/kg	<0.02	0.1 mg/kg	74.7	53	128

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: SOIL			Spike		atrix Spike (MS) Report		
					SpikeRecovery(%)	Recovery L	
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)-SD	: Total Metals in Sediments by ICP-AES (QCI	_ot: 2226450)					
EP1902034-003	RF3	EG005-SD: Aluminium	7429-90-5	50 mg/kg	# Not	70	130
					Determined		
		EG005-SD: Iron	7439-89-6	50 mg/kg	# Not	70	130
					Determined		
EG035T: Total Re	ecoverable Mercury by FIMS (Low Level) (QCI	Lot: 2226449)					
EP1902034-003	RF3	EG035T-LL: Mercury	7439-97-6	10 mg/kg	113	70	130
EG020-SD: Total N	Metals in Sediments by ICPMS (QCLot: 22264	51)					
EP1902034-003	RF3	EG020-SD: Arsenic	7440-38-2	50 mg/kg	85.2	70	130
		EG020-SD: Cadmium	7440-43-9	50 mg/kg	94.3	70	130
	EG020-SD: Chromium 7440-47-3 50 n	50 mg/kg	84.7	70	130		
		EG020-SD: Copper	7440-50-8	50 mg/kg	79.1	70	130
		EG020-SD: Nickel	7440-02-0	50 mg/kg	91.2	70	130
		EG020-SD: Zinc	7440-66-6	50 mg/kg	86.2	70	130
EK055: Ammonia	as N (QCLot: 2221495)						
EP1901901-006	Anonymous	EK055: Ammonia as N	7664-41-7	50 mg/kg	# Not	70	130
					Determined		
EK057G: Nitrite a	s N by Discrete Analyser (QCLot: 2221520)						
EP1902034-003	RF3	EK057G: Nitrite as N (Sol.)	14797-65-0	2.5 mg/kg	105	70	130
EK059G: Nitrite p	lus Nitrate as N (NOx) by Discrete Analyser	(QCLot: 2221522)					
EP1902034-003	RF3	EK059G: Nitrite + Nitrate as N (Sol.)		2.5 mg/kg	116	70	130
EK061G: Total Kje	eldahl Nitrogen By Discrete Analyser (QCLot:	2227872)					
EP1902034-003	RF3	EK061G: Total Kjeldahl Nitrogen as N		500 mg/kg	101	70	130
EK067G: Total Ph	osphorus as P by Discrete Analyser (QCLot:	2227871)			1		
EP1902034-003	RF3	EK067G: Total Phosphorus as P		100 mg/kg	96.7	70	130
	Phosphorus as P by discrete analyser (QCL			i do mg/ng	00.1	10	100

Page	: 10 of 11
Work Order	: EP1902034
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Sub-Matrix: SOIL					Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery I	Limits (%)		
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
K071G: Reactive	Phosphorus as P by discrete analyser (QCLo	t: 2221521) - continued							
EP1902034-003	RF3	EK071G: Reactive Phosphorus as P	14265-44-2	2.5 mg/kg	99.2	70	130		
	-SD: Total Petroleum Hydrocarbons (QCLot: 2								
EP1902034-003	RF3	EP080-SD: C6 - C9 Fraction		32 mg/kg	78.9	70	130		
				52 mg/kg	10.5	70	150		
	-SD: Total Petroleum Hydrocarbons (QCLot: 2								
EP1902034-003	RF3	EP071-SD: C10 - C14 Fraction		252 mg/kg	77.2	70	130		
		EP071-SD: C15 - C28 Fraction		634 mg/kg	86.5	70	130		
		EP071-SD: C29 - C36 Fraction		99 mg/kg	82.2	70	130		
EP080-SD / EP071	-SD: Total Recoverable Hydrocarbons (QCLot	:: 2221903)							
EP1902034-003	RF3	EP080-SD: C6 - C10 Fraction	C6_C10	37 mg/kg	73.7	70	130		
EP080-SD / EP071	-SD: Total Recoverable Hydrocarbons (QCLot	:: 2221905)							
EP1902034-003	RF3	EP071-SD: >C10 - C16 Fraction		404 mg/kg	82.3	70	130		
		EP071-SD: >C16 - C34 Fraction		567 mg/kg	81.6	70	130		
		EP071-SD: >C34 - C40 Fraction		33 mg/kg	81.8	70	130		
	l (QCLot: 2221903)			3 3					
EP1902034-003	RF3	ED000 CD: Destate	71-43-2	2 mg/kg	99.7	70	130		
LF 1902034-003		EP080-SD: Benzene EP080-SD: Toluene	108-88-3	2 mg/kg	84.4	70	130		
		EP080-SD: Toluene	100-00-5	2 mg/kg	04.4	70	150		
	Compounds (QCLot: 2222229)								
EP1902034-003	RF3	EP090: Monobutyltin	78763-54-9	1.25 µgSn/kg	67.2	35	130		
		EP090: Dibutyltin	1002-53-5	1.25 µgSn/kg	120	20	130		
		EP090: Tributyltin	56573-85-4	1.25 µgSn/kg	103	20	130		
EP132B: Polynucl	ear Aromatic Hydrocarbons (QCLot: 2221906)								
EP1902034-003	RF3	EP132B-SD: Naphthalene	91-20-3	25 µg/kg	76.7	70	130		
		EP132B-SD: Acenaphthylene	208-96-8	25 µg/kg	70.6	70	130		
		EP132B-SD: Acenaphthene	83-32-9	25 µg/kg	76.4	70	130		
		EP132B-SD: Fluorene	86-73-7	25 µg/kg	76.5	70	130		
		EP132B-SD: Phenanthrene	85-01-8	25 µg/kg	81.3	70	130		
		EP132B-SD: Anthracene	120-12-7	25 µg/kg	77.0	70	130		
		EP132B-SD: Fluoranthene	206-44-0	25 µg/kg	92.4	70	130		
		EP132B-SD: Pyrene	129-00-0	25 µg/kg	94.1	70	130		
		EP132B-SD: Benz(a)anthracene	56-55-3	25 µg/kg	95.4	70	130		
		EP132B-SD: Chrysene	218-01-9	25 µg/kg	98.3	70	130		
		EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	25 µg/kg	80.8	70	130		
			205-82-3						
		EP132B-SD: Benzo(k)fluoranthene	207-08-9	25 µg/kg	119	70	130		
		EP132B-SD: Benzo(a)pyrene	50-32-8	25 µg/kg	85.3	70	130		
		EP132B-SD: Benzo(g.h.i)perylene	191-24-2	25 µg/kg	96.9	70	130		
		EP132B-SD: Dibenz(a.h)anthracene	53-70-3	25 µg/kg	91.4	70	130		

Page	:11 of 11
Work Order	: EP1902034
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Sub-Matrix: SOIL	ub-Matrix: SOIL					Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery L	imits (%)			
Laboratory sample ID	Client sample ID	Method: Compound C/	AS Number	Concentration	MS	Low	High			
EP132B: Polynucle	ar Aromatic Hydrocarbons (QCLot: 2221906) - continu									
EP1902034-003	RF3	EP132B-SD: Indeno(1.2.3.cd)pyrene 19	93-39-5	25 µg/kg	74.4	70	130			
EP202A: Phenoxya	cetic Acid Herbicides by LCMS (QCLot: 2223949)									
EP1901901-005	Anonymous	EP202: Mecoprop 93	3-65-2	0.1 mg/kg	71.0	60	140			
		EP202: MCPA 94	4-74-6	0.1 mg/kg	80.0	57	143			
		EP202: 2.4-D 94	4-75-7	0.1 mg/kg	70.0	68	139			
		EP202: Triclopyr 55	5335-06-3	0.1 mg/kg	83.0	51	145			
		EP202: 2.4.5-T 93	3-76-5	0.1 mg/kg	74.8	57	142			
		EP202: Picloram 19	918-02-1	0.1 mg/kg	55.5	49	138			
		EP202: Clopyralid 17	702-17-6	0.1 mg/kg	62.2	49	149			

	QA/QC Compliance Assessment to assist with Quality Review								
Work Order	: EP1814856	Page	: 1 of 13						
Client		Laboratory	: Environmental Division Perth						
Contact	: Claudio Deldeo	Telephone	: 08 9406 1311						
Project	: 18WAU-0002 Mardie Project: Sediment Sampling	Date Samples Received	: 19-Dec-2018						
Site	:	Issue Date	: 07-Jan-2019						
Sampler	: Claudio Deldeo	No. of samples received	: 13						
Order number	:	No. of samples analysed	: 13						

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- Laboratory Control outliers exist please see following pages for full details.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Laboratory Control Spike (LCS) Recoveries							
EP090: Organotin Compounds	QC-2109384-002		Dibutyltin	1002-53-5	152 %	42-132%	Recovery greater than upper control
							limit
Matrix Spike (MS) Recoveries							
EG005-SD: Total Metals in Sediments by ICP-AES	EP1814856002	TRIP-1	Aluminium	7429-90-5	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EG005-SD: Total Metals in Sediments by ICP-AES	EP1814856002	TRIP-1	Iron	7439-89-6	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EK067G: Total Phosphorus as P by Discrete Analyser	EP1814856002	TRIP-1	Total Phosphorus as P		60.8 %	70-130%	Recovery less than lower data quality
							objective

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA037: Ass Field Screening Analysis	5							
Snap Lock Bag - frozen on receipt at A	ALS (EA037)							
SPLIT-P1,	ТВ2,	12-Dec-2018	20-Dec-2018	10-Jun-2019	1	20-Dec-2018	10-Jun-2019	✓
ТВЗ,	C1-1,							
C2,	C3-1,							
C3-2,	C4,							
C5,	C6-1,							
OC2,	OC3							
Snap Lock Bag - frozen on receipt at A	ALS (EA037)							
TRIP-1		15-Dec-2018	20-Dec-2018	13-Jun-2019	✓	20-Dec-2018	13-Jun-2019	✓

Page	: 3 of 13
Work Order	: EP1814856
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Matrix: SOIL					Evaluation	: × = Holding time	breach ; 🗸 = With	in holding time
Method		Sample Date	Extraction / Preparation					
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @	2 105-110°C)							
Soil Glass Jar - Unpreserved (EA05								
SPLIT-P1,	TB2,	12-Dec-2018				20-Dec-2018	26-Dec-2018	 ✓
ТВЗ,	C1-1,							
C2,	C3-1,							
C3-2,	C4,							
C5,	C6-1,							
OC2,	OC3							
Soil Glass Jar - Unpreserved (EA05								
TRIP-1		15-Dec-2018				20-Dec-2018	29-Dec-2018	 ✓
EA150: Particle Sizing								
Snap Lock Bag - Friable Asbestos/	PSD Bag (EA150H)							
TB2,	TB3,	12-Dec-2018				03-Jan-2019	10-Jun-2019	✓
C1-1,	C2,							
C3-1,	C3-2,							
C4,	C5,							
C6-1,	OC2,							
OC3								
Snap Lock Bag - Friable Asbestos/	PSD Bag (EA150H)							
TRIP-1		15-Dec-2018				03-Jan-2019	13-Jun-2019	✓
EA150: Soil Classification based o	on Particle Size							
Snap Lock Bag - Friable Asbestos/							10.1.0010	
ТВ2,	TB3,	12-Dec-2018				03-Jan-2019	10-Jun-2019	✓
C1-1,	C2,							
C3-1,	C3-2,							
C4,	C5,							
C6-1,	OC2,							
OC3								
Snap Lock Bag - Friable Asbestos/I	PSD Bag (EA150H)	45 Dec 2049				02 100 2010	13-Jun-2019	
TRIP-1		15-Dec-2018				03-Jan-2019	13-3011-2019	✓
EA152: Soil Particle Density						1		
Snap Lock Bag - Friable Asbestos/I TB2,	PSD Bag (EA152) TB3,	12-Dec-2018				03-Jan-2019	10-Jun-2019	
		12-Dec-2010				03-5411-2015	10-0011-2013	✓
C1-1,	C2,							
C3-1,	C3-2,							
C4,	C5,							
C6-1,	OC2,							
OC3								
Snap Lock Bag - Friable Asbestos/I	PSD Bag (EA152)	15-Dec-2018				03-Jan-2019	13-Jun-2019	
TRIP-1		15-Dec-2018				03-Jan-2019	13-Juli-2019	✓

Page	: 4 of 13
Work Order	: EP1814856
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Matrix: SOIL					Evaluatior	: × = Holding time	breach ; 🗸 = With	in holding time
Method		Sample Date	Extraction / Preparation					
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG005-SD: Total Metals in Sediment	ts by ICP-AES							
Soil Glass Jar - Unpreserved (EG005-								
SPLIT-P1,	ТВ2,	12-Dec-2018	20-Dec-2018	10-Jun-2019	~	21-Dec-2018	10-Jun-2019	✓
ТВЗ,	C1-1,							
C2,	C3-1,							
C4,	C5,							
C6-1,	OC2,							
OC3								
Soil Glass Jar - Unpreserved (EG005-	-SD)							
TRIP-1		15-Dec-2018	20-Dec-2018	13-Jun-2019	1	21-Dec-2018	13-Jun-2019	\checkmark
EG020-SD: Total Metals in Sediment	ts by ICPMS							
Soil Glass Jar - Unpreserved (EG020-								
SPLIT-P1,	ТВ2,	12-Dec-2018	20-Dec-2018	10-Jun-2019	✓	21-Dec-2018	10-Jun-2019	✓
ТВЗ,	C1-1,							
C2,	C3-1,							
C4,	C5,							
C6-1,	OC2,							
OC3								
Soil Glass Jar - Unpreserved (EG020-	-SD)							
TRIP-1		15-Dec-2018	20-Dec-2018	13-Jun-2019	✓	21-Dec-2018	13-Jun-2019	✓
EG035T: Total Recoverable Mercury	y by FIMS							
Soil Glass Jar - Unpreserved (EG035	-							
SPLIT-P1,	TB2,	12-Dec-2018	20-Dec-2018	09-Jan-2019	~	21-Dec-2018	09-Jan-2019	✓
TB3,	C1-1,							
C2,	C3-1,							
C4,	C5,							
C6-1,	OC2,							
OC3								
Soil Glass Jar - Unpreserved (EG035	T-LL)							
TRIP-1		15-Dec-2018	20-Dec-2018	12-Jan-2019	-	21-Dec-2018	12-Jan-2019	✓
EK055: Ammonia as N								
Soil Glass Jar - Unpreserved (EK055)								
SPLIT-P1,	TB2,	12-Dec-2018				20-Dec-2018	10-Jun-2019	✓
ТВЗ,	C1-1,							
C2,	C3-1,							
C4,	C5,							
C6-1,	OC2,							
OC3								
Soil Glass Jar - Unpreserved (EK055)								
TRIP-1		15-Dec-2018				20-Dec-2018	13-Jun-2019	✓

Page	: 5 of 13
Work Order	: EP1814856
Client	: WA MARINE PTY LTD
Project	2 18WAU-0002 Mardie Project: Sediment Sampling

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	in holding tim
Method		Sample Date	Extraction / Preparation					
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK057G: Nitrite as N by Discrete Analys	ser							
Soil Glass Jar - Unpreserved (EK057G)								
SPLIT-P1,	ТВ2,	12-Dec-2018	24-Dec-2018	10-Jun-2019	1	24-Dec-2018	10-Jun-2019	✓
ТВЗ,	C1-1,							
C2,	C3-1,							
C4,	C5,							
C6-1,	OC2,							
OC3								
Soil Glass Jar - Unpreserved (EK057G)								
TRIP-1		15-Dec-2018	24-Dec-2018	13-Jun-2019	1	24-Dec-2018	13-Jun-2019	✓
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Analyser							
Soil Glass Jar - Unpreserved (EK059G)								
SPLIT-P1,	TB2,	12-Dec-2018	24-Dec-2018	10-Jun-2019	1	24-Dec-2018	10-Jun-2019	✓
ТВ3,	C1-1,							
C2,	C3-1,							
C4,	C5,							
C6-1,	OC2,							
OC3	,							
Soil Glass Jar - Unpreserved (EK059G)								
TRIP-1		15-Dec-2018	24-Dec-2018	13-Jun-2019	1	24-Dec-2018	13-Jun-2019	✓
EK061G: Total Kjeldahl Nitrogen By Dis	crete Analyser							
Soil Glass Jar - Unpreserved (EK061G)								
SPLIT-P1,	ТВ2,	12-Dec-2018	20-Dec-2018	10-Jun-2019	1	24-Dec-2018	10-Jun-2019	✓
ТВЗ,	C1-1,							
C2,	C3-1,							
C4,	C5,							
C6-1,	OC2,							
OC3								
Soil Glass Jar - Unpreserved (EK061G)								
TRIP-1		15-Dec-2018	20-Dec-2018	13-Jun-2019	-	24-Dec-2018	13-Jun-2019	✓
EK067G: Total Phosphorus as P by Disc	crete Analyser							
Soil Glass Jar - Unpreserved (EK067G)								
SPLIT-P1,	ТВ2,	12-Dec-2018	20-Dec-2018	10-Jun-2019	1	24-Dec-2018	10-Jun-2019	✓
TB3,	C1-1,							
C2,	C3-1,							
C4,	C5,							
C6-1,	OC2,							
OC3								
Soil Glass Jar - Unpreserved (EK067G)								
TRIP-1		15-Dec-2018	20-Dec-2018	13-Jun-2019	1	24-Dec-2018	13-Jun-2019	√

Page	: 6 of 13
Work Order	: EP1814856
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Method		Sample Date	Extraction / Preparation		Analysis			
Container / Client Sample ID(s)		Cumple Date	Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluatio
			Date extracted	Due for extraction	Lvaluation	Date analysed	Due for analysis	Lvaluation
EK071G: Reactive Phosphorus as P by discre	ete analyser		1			1		
Soil Glass Jar - Unpreserved (EK071G) SPLIT-P1.	TB2,	12-Dec-2018	24-Dec-2018	10-Jun-2019	1	24-Dec-2018	10-Jun-2019	
TB3.	C1-1,	12-Dec-2010	24-Dec-2010	10-0011-2013	~	24-Dec-2010	10-3011-2013	-
C2.	C3-1,							
,	,							
C4,	C5,							
C6-1,	OC2,							
OC3								
Soil Glass Jar - Unpreserved (EK071G)				10 1 0010			10 1	
TRIP-1		15-Dec-2018	24-Dec-2018	13-Jun-2019	✓	24-Dec-2018	13-Jun-2019	\checkmark
EP003: Total Organic Carbon (TOC) in Soil								
Snap Lock Bag - frozen on receipt at ALS (EP	003)							
ТВ3,	C1-1,	12-Dec-2018	02-Jan-2019	09-Jan-2019	✓	02-Jan-2019	09-Jan-2019	 ✓
C2,	C5,							
OC2,	OC3							
Soil Glass Jar - Unpreserved (EP003)								
SPLIT-P1,	TB2,	12-Dec-2018	02-Jan-2019	09-Jan-2019	1	02-Jan-2019	09-Jan-2019	✓
C3-1,	C4,							
C6-1								
Soil Glass Jar - Unpreserved (EP003)								
TRIP-1		15-Dec-2018	02-Jan-2019	12-Jan-2019	1	02-Jan-2019	12-Jan-2019	1
EP080/071: Total Recoverable Hydrocarbons	- NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP071-SD)								
SPLIT-P1,	ТВ2,	12-Dec-2018	20-Dec-2018	26-Dec-2018	1	20-Dec-2018	29-Jan-2019	 ✓
ТВ3,	C1-1,							
C2,	C3-1,							
C4,	C5,							
C6-1,	OC2,							
OC3								
Soil Glass Jar - Unpreserved (EP071-SD)								
TRIP-1		15-Dec-2018	20-Dec-2018	29-Dec-2018	1	20-Dec-2018	29-Jan-2019	 ✓

Page	: 7 of 13
Work Order	: EP1814856
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Method	Method		Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)		Sample Date	Date extracted Due for extraction		Evaluation	Date analysed	Due for analysis	Evaluation	
EP080-SD / EP071-SD: Total Petroleum	Hydrocarbons								
Soil Glass Jar - Unpreserved (EP071-SD)									
SPLIT-P1,	TB2,	12-Dec-2018	20-Dec-2018	26-Dec-2018	1	20-Dec-2018	29-Jan-2019	1	
TB3,	C1-1,								
C2,	C3-1,								
C4,	C5,								
C6-1,	OC2,								
OC3	,								
oil Glass Jar - Unpreserved (EP080-SD)									
SPLIT-P1,	TB2,	12-Dec-2018	21-Dec-2018	26-Dec-2018	1	21-Dec-2018	26-Dec-2018	1	
TB3,	C1-1,								
C2,	C3-1,								
C4,	C5,								
C6-1,	OC2,								
OC3	,								
oil Glass Jar - Unpreserved (EP071-SD)									
TRIP-1		15-Dec-2018	20-Dec-2018	29-Dec-2018	1	20-Dec-2018	29-Jan-2019	1	
oil Glass Jar - Unpreserved (EP080-SD)									
TRIP-1		15-Dec-2018	21-Dec-2018	29-Dec-2018	~	21-Dec-2018	29-Dec-2018	✓	
EP080-SD / EP071-SD: Total Recoverabl	le Hvdrocarbons								
Soil Glass Jar - Unpreserved (EP080-SD)									
SPLIT-P1,	TB2,	12-Dec-2018	21-Dec-2018	26-Dec-2018	1	21-Dec-2018	26-Dec-2018	✓	
TB3,	C1-1,								
C2,	C3-1,								
C4,	C5,								
C6-1,	OC2,								
OC3									
Soil Glass Jar - Unpreserved (EP080-SD)									
TRIP-1		15-Dec-2018	21-Dec-2018	29-Dec-2018	1	21-Dec-2018	29-Dec-2018	✓	
EP080-SD: BTEXN									
oil Glass Jar - Unpreserved (EP080-SD)									
SPLIT-P1,	ТВ2,	12-Dec-2018	21-Dec-2018	26-Dec-2018	1	21-Dec-2018	26-Dec-2018	✓	
ТВ3,	C1-1,								
C2,	C3-1,								
C4,	C5,								
C6-1,	OC2,								
OC3									
ioil Glass Jar - Unpreserved (EP080-SD)									

Page	: 8 of 13
Work Order	: EP1814856
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Matrix: SOIL					Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time
Method		Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP090: Organotin Compounds								
Soil Glass Jar - Unpreserved (EP0	90)							
SPLIT-P1,	TB2,	12-Dec-2018	21-Dec-2018	26-Dec-2018	1	27-Dec-2018	30-Jan-2019	✓
C3-1,	C4,							
C6-1								
Soil Glass Jar - Unpreserved (EP0	90)							
TRIP-1		15-Dec-2018	21-Dec-2018	29-Dec-2018	-	27-Dec-2018	30-Jan-2019	✓
EP132B: Polynuclear Aromatic H	ydrocarbons							
Soil Glass Jar - Unpreserved (EP1	32B-SD)							
SPLIT-P1,	TB2,	12-Dec-2018	20-Dec-2018	26-Dec-2018	1	21-Dec-2018	29-Jan-2019	✓
TB3,	C1-1,							
C2,	C3-1,							
C4,	C5,							
C6-1,	OC2,							
OC3								
Soil Glass Jar - Unpreserved (EP1	32B-SD)							
TRIP-1		15-Dec-2018	20-Dec-2018	29-Dec-2018	✓	21-Dec-2018	29-Jan-2019	✓
EP202A: Phenoxyacetic Acid Her	bicides by LCMS							
Soil Glass Jar - Unpreserved (EP2	02)							
SPLIT-P1,	TB2,	12-Dec-2018	21-Dec-2018	26-Dec-2018	1	21-Dec-2018	30-Jan-2019	 ✓
C3-1,	C4,							
C6-1								
Soil Glass Jar - Unpreserved (EP2	02)							
TRIP-1		15-Dec-2018	21-Dec-2018	29-Dec-2018	1	21-Dec-2018	30-Jan-2019	✓

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		Count		Rate (%)			Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
aboratory Duplicates (DUP)							
ASS Field Screening Analysis	EA037	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Buchi Ammonia	EK055	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
loisture Content	EA055	4	31	12.90	10.00	✓	NEPM 2013 B3 & ALS QC Standard
litrite and Nitrate as N (NOx)- Soluble by Discrete	EK059G	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
nalyser							
itrite as N - Soluble by Discrete Analyser	EK057G	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
rganotin Analysis	EP090	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
AHs in Sediments by GCMS(SIM)	EP132B-SD	2	12	16.67	10.00	1	NEPM 2013 B3 & ALS QC Standard
henoxyacetic Acid Herbicides (LCMS - Standard DL)	EP202	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
eactive Phosphorus as P-Soluble By Discrete Analyser	EK071G	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
KN as N By Discrete Analyser	EK061G	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Fe and AI in Sediments by ICPAES	EG005-SD	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Mercury by FIMS (Low Level)	EG035T-LL	2	12	16.67	10.00	~	NEPM 2013 B3 & ALS QC Standard
otal Metals in Sediments by ICPMS	EG020-SD	2	12	16.67	10.00	~	NEPM 2013 B3 & ALS QC Standard
otal Organic Carbon	EP003	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Phosporus By Discrete Analyser	EK067G	2	12	16.67	10.00	1	NEPM 2013 B3 & ALS QC Standard
PH - Semivolatile Fraction	EP071-SD	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX in Sediments	EP080-SD	2	12	16.67	10.00	~	NEPM 2013 B3 & ALS QC Standard
aboratory Control Samples (LCS)							
uchi Ammonia	EK055	1	12	8.33	5.00	1	NEPM 2013 B3 & ALS QC Standard
itrite and Nitrate as N (NOx)- Soluble by Discrete	EK059G	1	12	8.33	5.00	~	NEPM 2013 B3 & ALS QC Standard
nalyser							
itrite as N - Soluble by Discrete Analyser	EK057G	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
rganotin Analysis	EP090	1	8	12.50	5.00	~	NEPM 2013 B3 & ALS QC Standard
AHs in Sediments by GCMS(SIM)	EP132B-SD	1	12	8.33	5.00	~	NEPM 2013 B3 & ALS QC Standard
henoxyacetic Acid Herbicides (LCMS - Standard DL)	EP202	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
eactive Phosphorus as P-Soluble By Discrete Analyser	EK071G	1	12	8.33	5.00	~	NEPM 2013 B3 & ALS QC Standard
KN as N By Discrete Analyser	EK061G	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Mercury by FIMS (Low Level)	EG035T-LL	1	12	8.33	5.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard
otal Metals in Sediments by ICPMS	EG020-SD	1	12	8.33	5.00	~	NEPM 2013 B3 & ALS QC Standard
otal Organic Carbon	EP003	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
otal Phosporus By Discrete Analyser	EK067G	2	12	16.67	10.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard
PH - Semivolatile Fraction	EP071-SD	1	12	8.33	5.00	~	NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX in Sediments	EP080-SD	1	12	8.33	5.00	~	NEPM 2013 B3 & ALS QC Standard
lethod Blanks (MB)							
uchi Ammonia	EK055	1	12	8.33	5.00	1	NEPM 2013 B3 & ALS QC Standard

Quality Control Sample Type			ount		Rate (%)		not within specification ; \checkmark = Quality Control frequency within specific Quality Control Specification	
Analytical Methods	Method	QC Regular		Actual	Expected	Evaluation	Quality Control Specification	
	mounou	00	Redular	Actual	Expected			
Aethod Blanks (MB) - Continued litrite and Nitrate as N (NOx)- Soluble by Discrete	EK059G	1	12	8.33	5.00	1	NEPM 2013 B3 & ALS QC Standard	
nalyser	EK059G		12	0.00	0.00	•		
itrite as N - Soluble by Discrete Analyser	EK057G	1	12	8.33	5.00	~	NEPM 2013 B3 & ALS QC Standard	
Irganotin Analysis	EP090	1	8	12.50	5.00		NEPM 2013 B3 & ALS QC Standard	
AHs in Sediments by GCMS(SIM)	EP132B-SD	1	12	8.33	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard	
henoxyacetic Acid Herbicides (LCMS - Standard DL)	EP202	1	15	6.67	5.00		NEPM 2013 B3 & ALS QC Standard	
eactive Phosphorus as P-Soluble By Discrete Analyser	EK071G	1	12	8.33	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard	
KN as N By Discrete Analyser	EK061G	1	12	8.33	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard	
otal Fe and Al in Sediments by ICPAES	EG005-SD	1	12	8.33	5.00	✓ ✓	NEPM 2013 B3 & ALS QC Standard	
otal Mercury by FIMS (Low Level)	EG035T-LL	1	12	8.33	5.00	✓ ✓	NEPM 2013 B3 & ALS QC Standard	
otal Metals in Sediments by ICPMS	EG020-SD	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
otal Organic Carbon	EP003	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
otal Phosporus By Discrete Analyser	EK067G	1	12	8.33	5.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard	
PH - Semivolatile Fraction	EP071-SD	1	12	8.33	5.00	~	NEPM 2013 B3 & ALS QC Standard	
RH Volatiles/BTEX in Sediments	EP080-SD	1	12	8.33	5.00	~	NEPM 2013 B3 & ALS QC Standard	
latrix Spikes (MS)								
uchi Ammonia	EK055	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
itrite and Nitrate as N (NOx)- Soluble by Discrete	EK059G	1	12	8.33	5.00	~	NEPM 2013 B3 & ALS QC Standard	
nalyser								
trite as N - Soluble by Discrete Analyser	EK057G	1	12	8.33	5.00	1	NEPM 2013 B3 & ALS QC Standard	
rganotin Analysis	EP090	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
AHs in Sediments by GCMS(SIM)	EP132B-SD	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
henoxyacetic Acid Herbicides (LCMS - Standard DL)	EP202	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
eactive Phosphorus as P-Soluble By Discrete Analyser	EK071G	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
KN as N By Discrete Analyser	EK061G	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
tal Fe and Al in Sediments by ICPAES	EG005-SD	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
tal Mercury by FIMS (Low Level)	EG035T-LL	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
tal Metals in Sediments by ICPMS	EG020-SD	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
otal Phosporus By Discrete Analyser	EK067G	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
PH - Semivolatile Fraction	EP071-SD	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
RH Volatiles/BTEX in Sediments	EP080-SD	1	12	8.33	5.00	~	NEPM 2013 B3 & ALS QC Standard	

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions	
ASS Field Screening Analysis	EA037	SOIL	In house: Referenced to Acid Sulfate Soils Laboratory Methods Guidelines, version 2.1 June 2004. As received samples are tested for pH field and pH fox and assessed for a reaction rating.	
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).	
Particle Size Analysis by Hydrometer	EA150H	SOIL	Particle Size Analysis by Hydrometer according to AS1289.3.6.3 - 2003	
Soil Particle Density	* EA152	SOIL	Soil Particle Density by AS 1289.3.5.1-2006 : Methods of testing soils for engineering purposes - Soil classification tests - Determination of the soil particle density of a soil - Standard method	
Total Fe and AI in Sediments by ICPAES	EG005-SD	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3). LORs per NODG	
Total Metals in Sediments by ICPMS	EG020-SD	SOIL	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector. Analyte list and LORs per NODG.	
Total Mercury by FIMS (Low Level)	EG035T-LL	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)	
Buchi Ammonia	EK055	SOIL	In house: Referenced to APHA 4500-NH3 B&G, H Samples are steam distilled (Buchi) prior to analysis and quantified using titration, FIA or Discrete Analyser.	
Nitrite as N - Soluble by Discrete Analyser	EK057G	SOIL	In house: Referenced to APHA 4500-NO3- B. Nitrite in a water extract is determined by direct colourimetry by Discrete Analyser.	
Nitrate as N - Soluble by Discrete Analyser	EK058G	SOIL	In house: Referenced to APHA 4500-NO3- F. Nitrate in the 1:5 soil:water extract is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results.	
Nitrite and Nitrate as N (NOx)- Soluble by Discrete Analyser	EK059G	SOIL	In house: Thermo Scientific Method D08727 and NEMI (National Environmental Method Index) Method ID: 9171. This method covers the determination of total oxidised nitrogen (NOx-N) and nitrate (NO3-N) by calculation, Combined oxidised Nitrogen (NO2+NO3) in a water extract is determined by direct colourimetry by Discrete Analyser.	
TKN as N By Discrete Analyser	EK061G	SOIL	In house: Referenced to APHA 4500-Norg-D Soil samples are digested using Kjeldahl digestion followed by determination by Discrete Analyser.	
Total Nitrogen as N (TKN + NOx) By Discrete Analyser	EK062G	SOIL	In house: Referenced to APHA 4500 Norg/NO3- Total Nitrogen is determined as the sum of TKN and Oxidised Nitrrogen, each determined seperately as N.	
Total Phosporus By Discrete Analyser	EK067G	SOIL	In house: Referenced to APHA 4500 P-B&F This procedure involves sulfuric acid digestion and quantification using Discrete Analyser.	

Analytical Methods	Method	Matrix	Method Descriptions
Reactive Phosphorus as P-Soluble By Discrete Analyser	EK071G	SOIL	In house: Referenced to APHA 4500 P-F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3) (
Total Organic Carbon	EP003	SOIL	In house C-IR17. Dried and pulverised sample is reacted with acid to remove inorganic Carbonates, then combusted in a LECO furnace in the presence of strong oxidants / catalysts. The evolved (Organic) Carbon (as CO2) is automatically measured by infra-red detector.
TPH - Semivolatile Fraction	EP071-SD	SOIL	In house: Referenced to USEPA SW 846 - 8270D. Extracts are analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 504)
TRH Volatiles/BTEX in Sediments	EP080-SD	SOIL	In house: Referenced to USEPA SW 846 - 8260B Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve.
Organotin Analysis	EP090	SOIL	In house: Referenced to USEPA SW 846 - 8270D Prepared sample extracts are analysed by GC/MS coupled with high volume injection, and quantified against an established calibration curve.
PAHs in Sediments by GCMS(SIM)	EP132B-SD	SOIL	In house: Referenced to USEPA 8270D GCMS Capillary column, SIM mode using large volume programmed temperature vaporisation injection.
Phenoxyacetic Acid Herbicides (LCMS - Standard DL)	EP202	SOIL	In house: LCMS (Electrospray in negative mode). Residues of acid herbicides are extracted from soil samples under the alkaline condition. An aliquot of the alkaline aqueous phase is taken and acidified before a SPE cleanup. After eluting off from the SPE cartridge, residues of acid herbicides are dissolved in HPLC mobile phase prior to instrument analysis.
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	SOIL	In house: Referenced to APHA 4500 Norg- D; APHA 4500 P - H. Macro Kjeldahl digestion.
Drying only	EN020D	SOIL	In house
1:5 solid / water leach for soluble analytes	EN34	SOIL	10 g of soil is mixed with 50 mL of reagent grade water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Extraction for Phenoxy Acid Herbicides in Soils.	EP202-PR	SOIL	In-House: Alkaline extract followed by SPE clean up of acidified portion of the sample extract.
Dry and Pulverise (up to 100g)	GEO30	SOIL	#
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids for LVI (Non-concentrating)	ORG17D	SOIL	In house: 10g of sample, Na2SO4 and surrogate are extracted with 50mL 1:1 DCM/Acetone by end over end tumbling. An aliquot is concentrated by nitrogen blowdown to a reduced volume for analysis if required.
Organotin Sample Preparation	ORG35	SOIL	In house: 20g sample is spiked with surrogate and leached in a methanol:acetic acid:UHP water mix and vacuum filtered. Reagents and solvents are added to the sample and the mixture tumbled. The butyltin compounds are simultaneously derivatised and extracted. The extract is further extracted with petroleum ether. The resultant extracts are combined and concentrated for analysis.

Page	: 13 of 13
Work Order	: EP1814856
Client	: WA MARINE PTY LTD
Project	: 18WAU-0002 Mardie Project: Sediment Sampling

Appendix D Particle Size Distribution Results

Certificate of Analysis


ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT:	Claudio Deldeo	DATE REPORTED:	3-Jan-2019	
COMPANY:	WA MARINE PTY LTD	DATE RECEIVED:	19-Dec-2018	
	SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370 DUNSBOROUGH, PERTH	REPORT NO:	EP1814856-002 / PS	D
PROJECT:	18WAU-0002 Mardie Project: Sediment Sampling	SAMPLE ID:	TRIP-1	
Particle Size Distribution	<u>l</u>		Particle Size (mm)	%

Analysis Notes

Samples analysed as received.

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:

Loss on Pretreatment NA

Sample Description: FINES, SAND, SHELLS

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.61

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Particle Size (mm)	% Passing
19.0	100%
9.50	94%
4.75	81%
2.36	71%
1.18	60%
0.600	47%
0.425	40%
0.300	32%
0.150	17%
0.075	12%
Particle Size (microns)	
56	9%
40	8%
28	8%
20	8%
15	7%
10	6%
7	4%
5	4%
2	4%

0.734 Median Particle Size (mm)*

Analysed:

28-Dec-18

Limit of Reporting: 1%

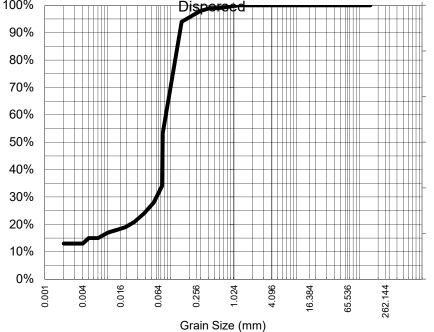
Dispersion Method Shaker

ENTRATION.

LD SECO

Dianne Blane Laboratory Coordinator Authorised Signatory

Certificate of Analysis


ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT:	Claudio Deldeo	DATE REPORTED:	3-Jan-2019	
COMPANY:	WA MARINE PTY LTD	DATE RECEIVED:	19-Dec-2018	
ADDRESS:	SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370 DUNSBOROUGH, PERTH	REPORT NO:	EP1814856-003 / PS	D
PROJECT:	18WAU-0002 Mardie Project: Sediment Sampling	SAMPLE ID:	TB2	
Particle Size Distributio			Particle Size (mm)	% Pa
100%	0.002			

Analysis Notes

Samples analysed as received.

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:

Loss on Pretreatment NA

Sample Description: FINES, SAND, SHELLS

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.62

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Particle Size (mm)	% Passing
1.18	100%
0.600	99%
0.425	99%
0.300	98%
0.150	94%
0.075	53%
Particle Size (microns)	
54	28%
38	24%
27	21%
19	19%
14	18%
10	17%
7	15%
5	15%
2	13%

0.075 Median Particle Size (mm)*

Analysed:

28-Dec-18

Limit of Reporting: 1%

Dispersion Method Shaker

ENTRATION.

Dianne Blane Laboratory Coordinator Authorised Signatory

Certificate of Analysis


ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT:	Claudio Deldeo	DATE REPORTED:	3-Jan-2019	
COMPANY:	WA MARINE PTY LTD	DATE RECEIVED:	19-Dec-2018	
ADDRESS:	SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370	REPORT NO:	EP1814856-004 / PS	D
PROJECT:	DUNSBOROUGH, PERTH 18WAU-0002 Mardie Project: Sediment Sampling	SAMPLE ID:	TB3	
Particle Size Distribution	<u>n</u>		Particle Size (mm)	% Pa
100%	0.002 Dispersed			

Analysis Notes

Samples analysed as received.

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:

Loss on Pretreatment NA

Sample Description: FINES, SAND, SHELLS

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.6

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Particle Size (mm)	% Passing
9.50	100%
4.75	95%
2.36	94%
1.18	94%
0.600	94%
0.425	93%
0.300	92%
0.150	86%
0.075	45%
Particle Size (microns)	
54	21%
38	17%
27	17%
20	15%
15	15%
10	15%
7	15%
5	13%
2	12%

0.084 Median Particle Size (mm)*

Analysed:

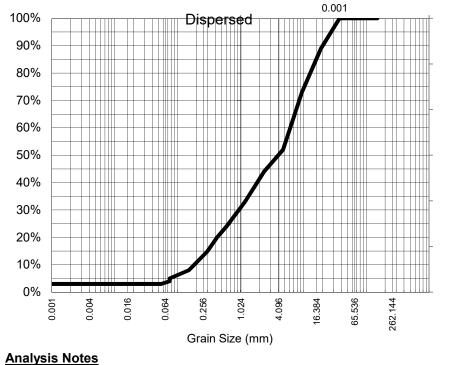
28-Dec-18

Limit of Reporting: 1%

Dispersion Method Shaker

ENTRATION.

Dianne Blane Laboratory Coordinator Authorised Signatory


ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT:	Claudio Deldeo	DATE REPORTED:	3-Jan-2019	
COMPANY:	WA MARINE PTY LTD	DATE RECEIVED:	19-Dec-2018	
ADDRESS:	SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370 DUNSBOROUGH, PERTH	REPORT NO:	EP1814856-005 / PS	D
PROJECT:	18WAU-0002 Mardie Project: Sediment Sampling	SAMPLE ID:	C1-1	
Particle Size Distribution	<u>1</u>		Particle Size (mm)	% P

Particle Size (mm)	% Passing
· · · · ·	
37.5	100%
19.0	89%
9.50	73%
4.75	52%
2.36	44%
1.18	33%
0.600	24%
0.425	20%
0.300	15%
0.150	8%
0.075	5%
Particle Size (microns)	
55	3%
39	3%
28	3%
20	3%
14	3%
10	3%
7	3%
5	3%
1	3%

Median Particle Size is not cove	ered under the current scope of ALS's NATA accreditation.	Median Particle Size (mm)*	4.153
Sample Comments:	AS1289.3.6.3 states that hydrometer analysis is not applicable for samples containing <10% fines (<75um). Results should be assessed accordingly	Analysed:	28-Dec-18
Loss on Pretreatment	NA	Limit of Reporting:	1%
Sample Description:	FINES, SAND, SHELLS	Dispersion Method	Shaker
Test Method:	AS1289.3.6.2/AS1289.3.6.3		
Soil Particle Density (<2	2.36mm) 2.68	Ani	

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

REDITATION

Str

Dianne Blane Laboratory Coordinator Authorised Signatory

Samples analysed as received.

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT:	Claudio Deldeo	DATE REPORTED:	3-Jan-2019	
COMPANY:	WA MARINE PTY LTD	DATE RECEIVED:	19-Dec-2018	
ADDRESS:	SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370 DUNSBOROUGH, PERTH	REPORT NO:	EP1814856-006 / PS	D
PROJECT:	18WAU-0002 Mardie Project: Sediment Sampling	SAMPLE ID:	C2	
Particle Size Distributio	<u>n</u>		Particle Size (mm)	% Pass
100%	0.001 Dispersed		07.5	4000

Particle Size (mm)	% Passing
37.5	100%
19.0	94%
9.50	72%
4.75	60%
2.36	52%
1.18	42%
0.600	33%
0.425	28%
0.300	22%
0.150	10%
0.075	6%
Particle Size (microns)	
55	4%
39	3%
28	3%
20	3%
14	3%
10	3%
7	3%
5	3%
1	3%

Median Particle Size is not cove	ered under the current scope of ALS's NATA accreditation.	Median Particle Size (mm)*	2.124
Sample Comments:	AS1289.3.6.3 states that hydrometer analysis is not applicable for samples containing <10% fines (<75um). Results should be assessed accordingly	Analysed:	28-Dec-18
Loss on Pretreatment	NA	Limit of Reporting:	1%
Sample Description:	FINES, SAND, SHELLS	Dispersion Method	Shaker
Test Method:	AS1289.3.6.2/AS1289.3.6.3		
Soil Particle Density (<2	2.36mm) 2.68	Q he	

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

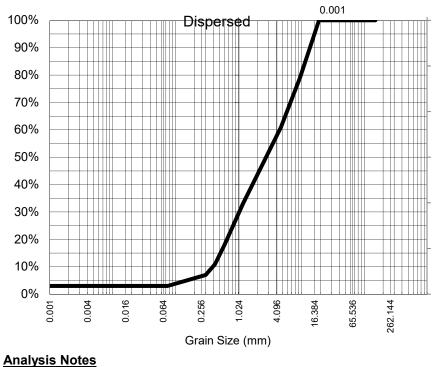
ACCREDITATION

Sta **Dianne Blane**

Laboratory Coordinator Authorised Signatory

Analysis Notes

Samples analysed as received.


ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

<u>CLIENT:</u>	Claudio Deldeo	DATE REPORTED:	3-Jan-2019	
COMPANY:	WA MARINE PTY LTD	DATE RECEIVED:	19-Dec-2018	
ADDRESS:	SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370 DUNSBOROUGH, PERTH	REPORT NO:	EP1814856-007 / PS	D
PROJECT:	18WAU-0002 Mardie Project: Sediment Sampling	SAMPLE ID:	C3-1	
Particle Size Distribution	n		Particle Size (mm)	% I

Particle Size (mm)	% Passing
19.0	100%
9.50	79%
4.75	61%
2.36	47%
1.18	33%
0.600	18%
0.425	11%
0.300	7%
0.150	5%
0.075	3%
Particle Size (microns)	
55	3%
39	3%
27	3%
19	3%
14	3%
10	3%
7	3%
5	3%
1	3%

		Median Particle Size (mm)*
Median Particle Size is not cov	ered under the current scope of ALS's NATA accreditation.	
Sample Comments:	AS1289.3.6.3 states that hydrometer analysis is not applicable for samples containing <10% fines (<75um). Results should be assesse accordingly	d Analysed:
Loss on Pretreatment	NA	Limit of Reporting:
Sample Description:	FINES, SAND, SHELLS	Dispersion Method
<u>Test Method:</u>	AS1289.3.6.2/AS1289.3.6.3	
Soil Particle Density (<	2.36mm) 2.71	\bigcirc

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

ACCREDITATION

Dianne Blane Laboratory Coordinator Authorised Signatory

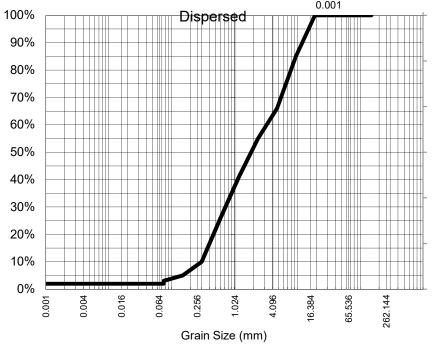
Samples analysed as received.

2.872

28-Dec-18

1%

Shaker


ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT:	Claudio Deldeo	DATE REPORTED:	3-Jan-2019	
COMPANY:	WA MARINE PTY LTD	DATE RECEIVED:	19-Dec-2018	
ADDRESS:	SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370	REPORT NO:	EP1814856-008 / PS	D
PROJECT:	DUNSBOROUGH, PERTH 18WAU-0002 Mardie Project: Sediment Sampling	SAMPLE ID:	C3-2	
Particle Size Distribution	<u>1</u>		Particle Size (mm)	% Passing
	0.001			

19.0	100%
9.50	85%
4.75	66%
2.36	55%
1.18	41%
0.600	26%
0.425	18%
0.300	10%
0.150	5%
0.075	3%
Particle Size (microns)	
55	2%
39	2%
28	2%
20	2%
14	2%
10	2%
7	2%
5	2%
1	2%

Ρ

Samples analysed as received.				

Analysis Notes

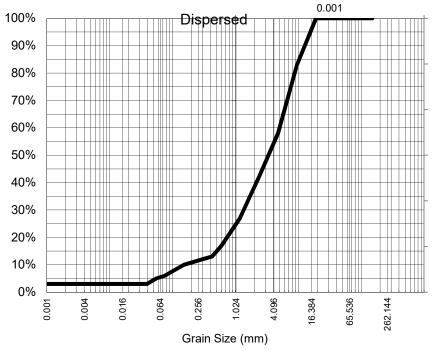
Median Particle Size is not cove	ered under the current scope of ALS's NATA accreditation.		
Sample Comments:	AS1289.3.6.3 states that hydrometer analysis is not applicable for samples containing <10% fines (<75um). Results should be assesse accordingly	<u>analysed:</u>	28-Dec-18
Loss on Pretreatment	NA	Limit of Reporting:	1%
Sample Description:	FINES, SAND, SHELLS	Dispersion Method	Shaker
<u>Test Method:</u>	AS1289.3.6.2/AS1289.3.6.3		
Soil Particle Density (<	2.36mm) 2.68	Q hl	

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Sta

Median Particle Size (mm)*

Dianne Blane Laboratory Coordinator Authorised Signatory 1.939


ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

<u>CLIENT:</u>	Claudio Deldeo	DATE REPORTED:	3-Jan-2019	
COMPANY:	WA MARINE PTY LTD	DATE RECEIVED:	19-Dec-2018	
ADDRESS:	SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370 DUNSBOROUGH, PERTH	REPORT NO:	EP1814856-009 / PS	D
PROJECT:	18WAU-0002 Mardie Project: Sediment Sampling	SAMPLE ID:	C4	
Particle Size Distribution			Particle Size (mm)	% Pa

Particle Size (mm)	% Passing
19.0	100%
9.50	83%
4.75	58%
2.36	42%
1.18	27%
0.600	17%
0.425	13%
0.300	12%
0.150	10%
0.075	6%
Particle Size (microns)	
55	5%
39	3%
28	3%
20	3%
14	3%
10	3%
7	3%
5	3%
1	3%

		Median Particle Size (mm)*	3.555
Median Particle Size is not cover	red under the current scope of ALS's NATA accreditation.		
Sample Comments:	AS1289.3.6.3 states that hydrometer analysis is not applicable for samples containing <10% fines (<75um). Results should be assessed accordingly	Analysed:	28-Dec-^
Loss on Pretreatment	NA	Limit of Reporting:	1%
Sample Description:	FINES, SAND, SHELLS	Dispersion Method	Shaker
Test Method:	AS1289.3.6.2/AS1289.3.6.3		
Soil Particle Density (<2	<u>.36mm)</u> 2.67	\sim	

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full. FILD SECO

NATA

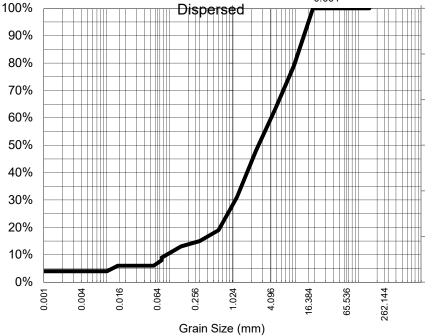
ACCREDITATION

Dianne Blane Laboratory Coordinator Authorised Signatory

Analysis Notes

Samples analysed as received.

28-Dec-18


ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

COMPANY:	WA MARINE PTY LTD	DATE RECEIVED:	19-Dec-2018	
ADDRESS:	SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370	REPORT NO:	EP1814856-010 / PS	D
PROJECT:	DUNSBOROUGH, PERTH 18WAU-0002 Mardie Project: Sediment Sampling	SAMPLE ID:	C5	
Particle Size Distributio			Particle Size (mm)	% Pa
	0.001			

	-
Particle Size (mm)	% Passing
19.0	100%
9.50	79%
4.75	63%
2.36	48%
1.18	31%
0.600	19%
0.425	17%
0.300	15%
0.150	13%
0.075	9%
Particle Size (microns)	
56	6%
40	6%
28	6%
20	6%
15	6%
10	4%
7	4%
5	4%
1	4%

Median Particle Size is not cove	ered under the current scope of ALS's NATA accreditation.	Median Particle Size (mm)*	2.679
Sample Comments:	AS1289.3.6.3 states that hydrometer analysis is not applicable for samples containing <10% fines (<75um). Results should be assessed accordingly	Analysed:	28-Dec-18
Loss on Pretreatment	NA	Limit of Reporting:	1%
Sample Description:	FINES, SAND, SHELLS	Dispersion Method	Shaker
Test Method:	AS1289.3.6.2/AS1289.3.6.3		
Soil Particle Density (<	2.36mm) 2.64	~	

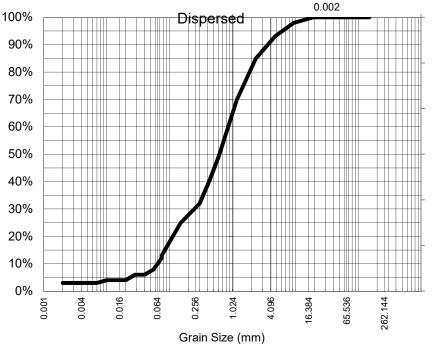
NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

ACCREDITATION

Dianne Blane Laboratory Coordinator Authorised Signatory

Analysis Notes

Samples analysed as received.


ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

<u>CLIENT:</u>	Claudio Deldeo	DATE REPORTED:	3-Jan-2019	
COMPANY:	WA MARINE PTY LTD	DATE RECEIVED:	19-Dec-2018	
ADDRESS:	SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370 DUNSBOROUGH, PERTH	REPORT NO:	EP1814856-011 / PSI	C
PROJECT:	18WAU-0002 Mardie Project: Sediment Sampling	SAMPLE ID:	C6-1	
Particle Size Distribution	n		Particle Size (mm)	%

Analysis Notes

Samples analysed as received.

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:

Loss on Pretreatment NA

Sample Description: FINES, SAND, SHELLS

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.63

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Particle Size (mm)	% Passing
19.0	100%
9.50	98%
4.75	93%
2.36	85%
1.18	70%
0.600	49%
0.425	40%
0.300	32%
0.150	25%
0.075	13%
Particle Size (microns)	
56	8%
40	6%
28	6%
20	4%
14	4%
10	4%
7	3%
5	3%
2	3%

0.628 Median Particle Size (mm)*

Analysed:

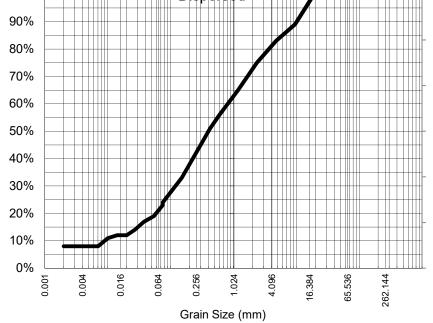
28-Dec-18

Limit of Reporting: 1%

Dispersion Method Shaker

LD SECO

ENTRATION.


ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT:	Claudio Deldeo	DATE REPORTED:	3-Jan-2019	
COMPANY:	WA MARINE PTY LTD	DATE RECEIVED:	19-Dec-2018	
ADDRESS:	SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370 DUNSBOROUGH, PERTH	REPORT NO:	EP1814856-012 / PS	D
PROJECT:	18WAU-0002 Mardie Project: Sediment Sampling	SAMPLE ID:	OC2	
Particle Size Distribution	<u>n</u>		Particle Size (mm)	% Passing
100%	0.002 Dispersed			
90%				

Samples analysed as received.

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:

Loss on Pretreatment NA

Sample Description: FINES, SAND, SHELLS

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.6

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Particle Size (mm)	% Passing
19.0	100%
9.50	89%
4.75	83%
2.36	75%
1.18	65%
0.600	56%
0.425	51%
0.300	45%
0.150	33%
0.075	24%
Particle Size (microns)	
54	19%
38	17%
27	14%
20	12%
14	12%
10	11%
7	8%
5	8%
2	8%

0.404 Median Particle Size (mm)*

Analysed:

28-Dec-18

Limit of Reporting: 1%

Dispersion Method Shaker

ENTRATION.

LD SECO

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT:	Claudio Deldeo	DATE REPORTED:	3-Jan-2019	
COMPANY:	WA MARINE PTY LTD	DATE RECEIVED:	19-Dec-2018	
ADDRESS:	SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370	REPORT NO:	EP1814856-013 / PS	D
PROJECT:	DUNSBOROUGH, PERTH 18WAU-0002 Mardie Project: Sediment Sampling	SAMPLE ID:	OC3	
Particle Size Distribution	<u>n</u>		Particle Size (mm)	% Pa
100%	0.002	·····		

Analysis Notes

Samples analysed as received.

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:

Loss on Pretreatment NA

Sample Description: FINES, SAND, SHELLS

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.64

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Particle Size (mm)	% Passing
9.50	100%
4.75	88%
2.36	78%
1.18	64%
0.600	50%
0.425	42%
0.300	34%
0.150	21%
0.075	14%
Particle Size (microns)	
56	9%
40	7%
28	7%
20	7%
14	7%
10	7%
7	6%
5	5%
2	3%

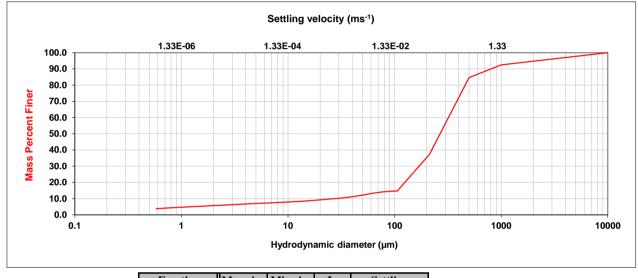
0.600 Median Particle Size (mm)*

Analysed:

28-Dec-18

Limit of Reporting: 1%

Dispersion Method Shaker

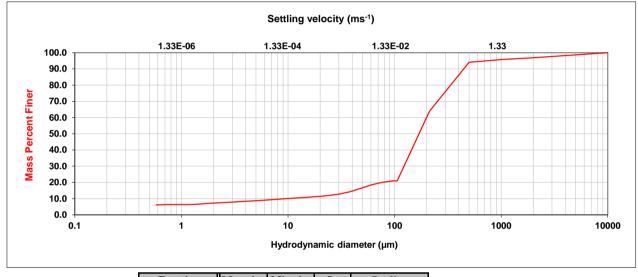


LD SECO

ENTRATION.

Client:	ALS		
Client ID:	EP1900623_016 C7		
Job No:	19_0098		
Laboratory ID:	19_0098_11		
Analysis:	X-ray sedimentation by Sedigraph 5100	Analysis temp.:	35.7ºC
Dispersant:	Water	Sonication:	10 min
Additives:	10 mL sodium hexametaphosphate	Concentration:	~5 % w/w
Sample density:	2.761 g/cm ³ (assumed)		
Liquid density:	0.994 g/cm ³	Critical diameter:	53.12 µm
Liquid viscosity:	0.722 ср		

Fraction	Max size	Min size	In	Settling
name	(µm)	(µm)	%	velocity (ms ⁻¹)*
Gravel	10000	2000	5.3	4.50E+01
Sand	2000	60	81.5	1.33E+00
Silt	60	2	7.3	1.20E-03
Clay	2	1	1.0	2.81E-06
Sub-clay	1	0	4.9	3.12E-07
Total			100.0	

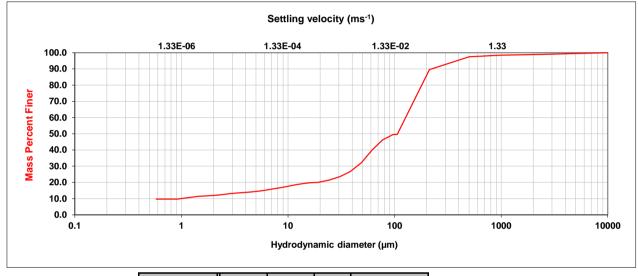

Reported by: Sumudu Ariyawansa, B.Sc.(Agriculture)(Hons), Dip.(Laboratory Technology)

Authorised by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

Note : Data from 106 μm to 10,000 μm by wet screening , from 0.3 μm to 106 μm by Sedimentation. * based on the mean of the size interval and on the the calculations and variables in the 'settling velocity worksheet Be Confident We See More www.microanalysis.com.au

Client:	ALS		
Client ID:	EP1900623_017 C8-1		
Job No:	19_0098		
Laboratory ID:	19_0098_12		
Analysis:	X-ray sedimentation by Sedigraph 5100	Analysis temp.:	35.7ºC
Dispersant:	Water	Sonication:	10 min
Additives:	10 mL sodium hexametaphosphate	Concentration:	~5 % w/w
Sample density:	2.756 g/cm ³ (assumed)		
Liquid density:	0.994 g/cm ³	Critical diameter:	53.21 µm
Liquid viscosity:	0.723 ср		

Fraction	Max size	Min size	In	Settling
name	(µm)	(µm)	%	velocity (ms ⁻¹)*
Gravel	10000	2000	3.1	4.50E+01
Sand	2000	60	78.3	1.33E+00
Silt	60	2	11.1	1.20E-03
Clay	2	1	1.1	2.81E-06
Sub-clay	1	0	6.4	3.12E-07
Total			100.0	

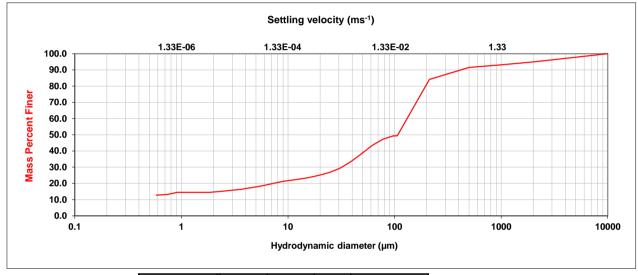

Reported by: Sumudu Ariyawansa, B.Sc.(Agriculture)(Hons), Dip.(Laboratory Technology)

Authorised by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

Note : Data from 106 μm to 10,000 μm by wet screening , from 0.3 μm to 106 μm by Sedimentation. * based on the mean of the size interval and on the the calculations and variables in the 'settling velocity worksheet Be Confident We See More www.microanalysis.com.au

Client:	ALS		
Client ID:	EP1900623-018 C9-1		
Job No:	19_0098		
Laboratory ID:	19_0098_13		
Analysis:	X-ray sedimentation by Sedigraph 5100	Analysis temp.:	35.7ºC
Dispersant:	Water	Sonication:	10 min
Additives:	10 mL sodium hexametaphosphate	Concentration:	~5 % w/w
Sample density:	2.713 g/cm ³ (assumed)		
Liquid density:	0.994 g/cm ³	Critical diameter:	53.67 µm
Liquid viscosity:	0.724 ср		

Fraction	Max size	Min size	In	Settling
name	(µm)	(µm)	%	velocity (ms ⁻¹)*
Gravel	10000	2000	1.2	4.50E+01
Sand	2000	60	59.0	1.33E+00
Silt	60	2	27.5	1.20E-03
Clay	2	1	1.7	2.81E-06
Sub-clay	1	0	10.6	3.12E-07
Total			100.0	

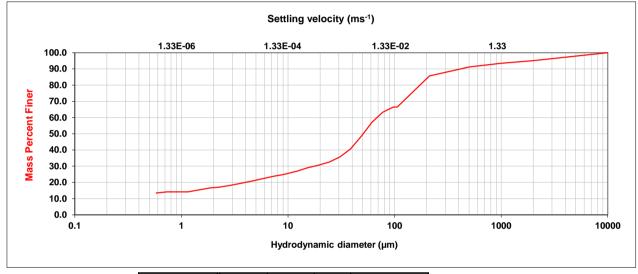

Reported by: Sumudu Ariyawansa, B.Sc.(Agriculture)(Hons), Dip.(Laboratory Technology)

Authorised by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

Note : Data from 106 μm to 10,000 μm by wet screening , from 0.3 μm to 106 μm by Sedimentation. * based on the mean of the size interval and on the the calculations and variables in the 'settling velocity worksheet Be Confident We See More www.microanalysis.com.au

Client:	ALS		
Client ID:	EP1900623_019 C9-2		
Job No:	19_0098		
Laboratory ID:	19_0098_14		
Analysis:	X-ray sedimentation by Sedigraph 5100	Analysis temp.:	35.7ºC
Dispersant:	Water	Sonication:	10 min
Additives:	10 mL sodium hexametaphosphate	Concentration:	~5 % w/w
Sample density:	2.736 g/cm ³ (assumed)		
Liquid density:	0.994 g/cm ³	Critical diameter:	53.45 µm
Liquid viscosity:	0.725 cp		

Fraction	Max size	Min size	In	Settling
name	(µm)	(µm)	%	velocity (ms ⁻¹)*
Gravel	10000	2000	5.1	4.50E+01
Sand	2000	60	51.6	1.33E+00
Silt	60	2	28.3	1.20E-03
Clay	2	1	0.5	2.81E-06
Sub-clay	1	0	14.5	3.12E-07
Total			100.0	

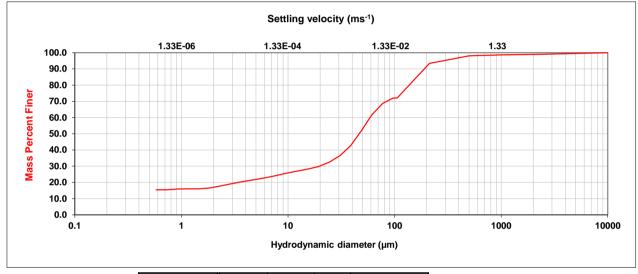

Reported by: Sumudu Ariyawansa, B.Sc.(Agriculture)(Hons), Dip.(Laboratory Technology)

Authorised by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

Note : Data from 106 μm to 10,000 μm by wet screening , from 0.3 μm to 106 μm by Sedimentation. * based on the mean of the size interval and on the the calculations and variables in the 'settling velocity worksheet Be Confident We See More www.microanalysis.com.au

Client:	ALS		
Client ID:	EP1900623_020 C10-1		
Job No:	19_0098		
Laboratory ID:	19_0098_15		
Analysis:	X-ray sedimentation by Sedigraph 5100	Analysis temp.:	35.7°C
Dispersant:	Water	Sonication:	10 min
Additives:	10 mL sodium hexametaphosphate	Concentration:	~5 % w/w
Sample density:	2.711 g/cm ³ (assumed)		
Liquid density:	0.994 g/cm ³	Critical diameter:	53.70 µm
Liquid viscosity:	0.725 ср		

Fraction	Max size	Min size	In	Settling
name	(µm)	(µm)	%	velocity (ms ⁻¹)*
Gravel	10000	2000	4.9	4.50E+01
Sand	2000	60	38.0	1.33E+00
Silt	60	2	39.9	1.20E-03
Clay	2	1	2.9	2.81E-06
Sub-clay	1	0	14.2	3.12E-07
Total			100.0	

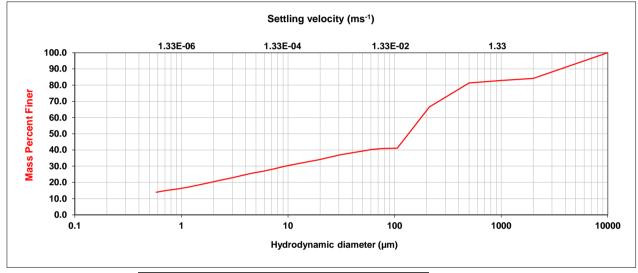

Reported by: Sumudu Ariyawansa, B.Sc.(Agriculture)(Hons), Dip.(Laboratory Technology)

Authorised by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

Note : Data from 106 μm to 10,000 μm by wet screening , from 0.3 μm to 106 μm by Sedimentation. * based on the mean of the size interval and on the the calculations and variables in the 'settling velocity worksheet Be Confident We See More www.microanalysis.com.au

Client:	ALS		
Client ID:	EP1900623_021 C11		
Job No:	19_0098		
Laboratory ID:	19_0098_16		
Analysis:	X-ray sedimentation by Sedigraph 5100	Analysis temp.:	35.7ºC
Dispersant:	Water	Sonication:	10 min
Additives:	10 mL sodium hexametaphosphate	Concentration:	~5 % w/w
Sample density:	2.711 g/cm ³ (assumed)		
Liquid density:	0.994 g/cm ³	Critical diameter:	53.68 µm
Liquid viscosity:	0.724 ср		

Fraction	Max size	Min size	In	Settling
name	(µm)	(µm)	%	velocity (ms ⁻¹)*
Gravel	10000	2000	1.1	4.50E+01
Sand	2000	60	37.2	1.33E+00
Silt	60	2	44.0	1.20E-03
Clay	2	1	1.7	2.81E-06
Sub-clay	1	0	16.0	3.12E-07
Total			100.0	


Reported by: Sumudu Ariyawansa, B.Sc.(Agriculture)(Hons), Dip.(Laboratory Technology)

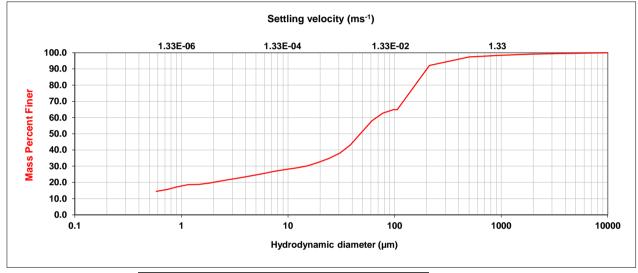
Authorised by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

Note : Data from 106 μm to 10,000 μm by wet screening , from 0.3 μm to 106 μm by Sedimentation. * based on the mean of the size interval and on the the calculations and variables in the 'settling velocity worksheet Be Confident We See More www.microanalysis.com.au

Client:	ALS		
Client ID:	EP1900623_023 O1		
Job No:	19_0098		
Laboratory ID:	19_0098_18		
Analysis:	X-ray sedimentation by Sedigraph 5100	Analysis temp.:	35.7ºC
Dispersant:	Water	Sonication:	10 min
Additives:	10 mL sodium hexametaphosphate	Concentration:	~5 % w/w
Sample density:	2.723 g/cm ³ (assumed)		
Liquid density:	0.994 g/cm ³	Critical diameter:	53.54 µm
Liquid viscosity:	0.723 cp		

Fraction	Max size	Min size	In	Settling
name	(µm)	(µm)	%	velocity (ms ⁻¹)*
Gravel	10000	2000	15.8	4.50E+01
Sand	2000	60	43.9	1.33E+00
Silt	60	2	19.0	1.20E-03
Clay	2	1	4.3	2.81E-06
Sub-clay	1	0	17.0	3.12E-07
Total			100.0	

Sumudu Ariyawansa, B.Sc.(Agriculture)(Hons), Dip.(Laboratory Technology) Analyst:

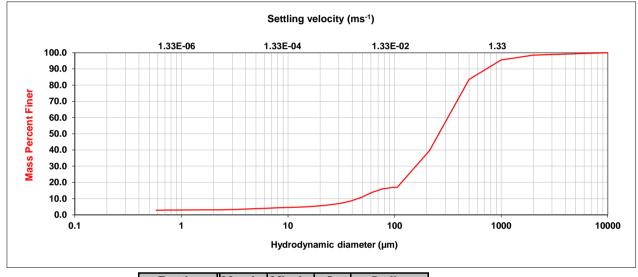

Reported by: Sumudu Ariyawansa, B.Sc.(Agriculture)(Hons), Dip.(Laboratory Technology)

Authorised by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

Note : Data from 106 μm to 10,000 μm by wet screening , from 0.3 μm to 106 μm by Sedimentation. * based on the mean of the size interval and on the the calculations and variables in the 'settling velocity worksheet Be Confident We See More www.microanalysis.com.au

Client:	ALS		
Client ID:	EP1900623_024 O2		
Job No:	19_0098		
Laboratory ID:	19_0098_19		
Analysis:	X-ray sedimentation by Sedigraph 5100	Analysis temp.:	35.7ºC
Dispersant:	Water	Sonication:	10 min
Additives:	10 mL sodium hexametaphosphate	Concentration:	~5 % w/w
Sample density:	2.691 g/cm ³ (assumed)		
Liquid density:	0.994 g/cm ³	Critical diameter:	53.87 µm
Liquid viscosity:	0.723 ср		

Fraction	Max size	Min size	In	Settling
name	(µm)	(µm)	%	velocity (ms ⁻¹)*
Gravel	10000	2000	0.8	4.50E+01
Sand	2000	60	41.2	1.33E+00
Silt	60	2	37.2	1.20E-03
Clay	2	1	2.2	2.81E-06
Sub-clay	1	0	18.6	3.12E-07
Total			100.0	

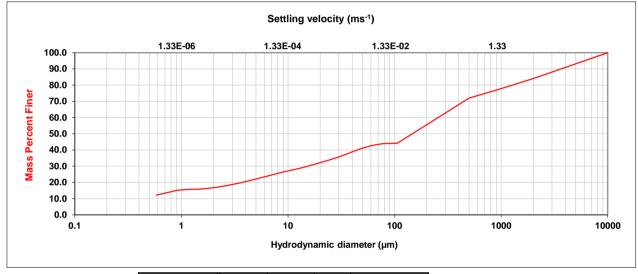

Reported by: Sumudu Ariyawansa, B.Sc.(Agriculture)(Hons), Dip.(Laboratory Technology)

Authorised by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

Note : Data from 106 μm to 10,000 μm by wet screening , from 0.3 μm to 106 μm by Sedimentation. * based on the mean of the size interval and on the the calculations and variables in the 'settling velocity worksheet Be Confident We See More www.microanalysis.com.au

Client:	ALS		
Client ID:	EP1900623_025 O3		
Job No:	19_0098		
Laboratory ID:	19_0098_20		
Analysis:	X-ray sedimentation by Sedigraph 5100	Analysis temp.:	35.7ºC
Dispersant:	Water	Sonication:	10 min
Additives:	10 mL sodium hexametaphosphate	Concentration:	~5 % w/w
Sample density:	2.719 g/cm ³ (assumed)		
Liquid density:	0.994 g/cm ³	Critical diameter:	53.60 µm
Liquid viscosity:	0.724 cp		

Fraction	Max size	Min size	In	Settling
name	(µm)	(µm)	%	velocity (ms ⁻¹)*
Gravel	10000	2000	1.5	4.50E+01
Sand	2000	60	84.7	1.33E+00
Silt	60	2	10.6	1.20E-03
Clay	2	1	0.1	2.81E-06
Sub-clay	1	0	3.1	3.12E-07
Total			100.0	


Reported by: Sumudu Ariyawansa, B.Sc.(Agriculture)(Hons), Dip.(Laboratory Technology)

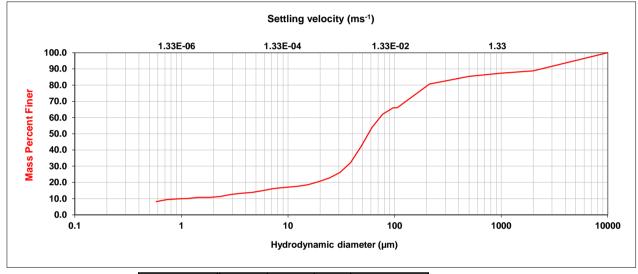
Authorised by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

Note : Data from 106 μm to 10,000 μm by wet screening , from 0.3 μm to 106 μm by Sedimentation. * based on the mean of the size interval and on the the calculations and variables in the 'settling velocity worksheet Be Confident We See More www.microanalysis.com.au

Client:	ALS		
Client ID:	EP1900623_022 OC1-1		
Job No:	19_0098		
Laboratory ID:	19_0098_17		
Analysis:	X-ray sedimentation by Sedigraph 5100	Analysis temp.:	35.7°C
Dispersant:	Water	Sonication:	10 min
Additives:	10 mL sodium hexametaphosphate	Concentration:	~5 % w/w
Sample density:	2.727 g/cm ³ (assumed)		
Liquid density:	0.994 g/cm ³	Critical diameter:	53.53 µm
Liquid viscosity:	0.725 cp		

Fraction	Max size	Min size	In	Settling
name	(µm)	(µm)	%	velocity (ms ⁻¹)*
Gravel	10000	2000	16.0	4.50E+01
Sand	2000	60	41.2	1.33E+00
Silt	60	2	25.5	1.20E-03
Clay	2	1	1.6	2.81E-06
Sub-clay	1	0	15.7	3.12E-07
Total			100.0	

Sumudu Ariyawansa, B.Sc.(Agriculture)(Hons), Dip.(Laboratory Technology) Analyst:

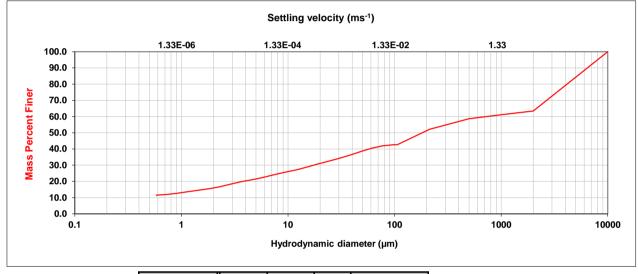

Reported by: Sumudu Ariyawansa, B.Sc.(Agriculture)(Hons), Dip.(Laboratory Technology)

Authorised by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

Note : Data from 106 μm to 10,000 μm by wet screening , from 0.3 μm to 106 μm by Sedimentation. * based on the mean of the size interval and on the the calculations and variables in the 'settling velocity worksheet Be Confident We See More www.microanalysis.com.au

Client:	ALS		
Client ID:	EP1900623_009 TB1-1		
Job No:	19_0098		
Laboratory ID:	19_0098_04		
Analysis:	X-ray sedimentation by Sedigraph 5100	Analysis temp.:	35.7°C
Dispersant:	Water	Sonication:	10 min
Additives:	10 mL sodium hexametaphosphate	Concentration:	~5 % w/w
Sample density:	2.704 g/cm ³ (assumed)	.	
Liquid density:	0.994 g/cm ³	Critical diameter:	53.78 µm
Liquid viscosity:	0.725 ср		

Fraction	Max size	Min size	In	Settling
name	(µm)	(µm)	%	velocity (ms ⁻¹)*
Gravel	10000	2000	11.2	4.50E+01
Sand	2000	60	35.0	1.33E+00
Silt	60	2	42.6	1.20E-03
Clay	2	1	1.2	2.81E-06
Sub-clay	1	0	10.1	3.12E-07
Total			100.0	


Reported by: Sumudu Ariyawansa, B.Sc.(Agriculture)(Hons), Dip.(Laboratory Technology)

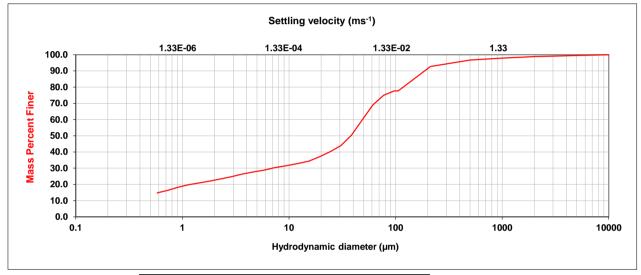
Authorised by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

Note : Data from 106 μm to 10,000 μm by wet screening , from 0.3 μm to 106 μm by Sedimentation. * based on the mean of the size interval and on the the calculations and variables in the 'settling velocity worksheet Be Confident We See More www.microanalysis.com.au

Client:	ALS		
Client ID:	EP1900623_010 TB4-1		
Job No:	19_0098		
Laboratory ID:	19_0098_05		
Analysis:	X-ray sedimentation by Sedigraph 5100	Analysis temp.:	35.7⁰C
Dispersant:	Water	Sonication:	10 min
Additives:	10 mL sodium hexametaphosphate	Concentration:	~5 % w/w
Sample density:	2.707 g/cm ³ (assumed)		
Liquid density:	0.994 g/cm ³	Critical diameter:	53.71 µm
Liquid viscosity:	0.723 cp		

Fraction	Max size	Min size	In	Settling
name	(µm)	(µm)	%	velocity (ms ⁻¹)*
Gravel	10000	2000	36.5	4.50E+01
Sand	2000	60	22.9	1.33E+00
Silt	60	2	23.8	1.20E-03
Clay	2	1	3.1	2.81E-06
Sub-clay	1	0	13.6	3.12E-07
Total			100.0	

Sumudu Ariyawansa, B.Sc.(Agriculture)(Hons), Dip.(Laboratory Technology) Analyst:

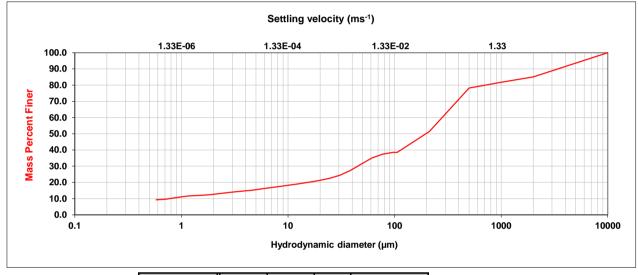

Reported by: Sumudu Ariyawansa, B.Sc.(Agriculture)(Hons), Dip.(Laboratory Technology)

Authorised by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

Note : Data from 106 μm to 10,000 μm by wet screening , from 0.3 μm to 106 μm by Sedimentation. * based on the mean of the size interval and on the the calculations and variables in the 'settling velocity worksheet Be Confident We See More www.microanalysis.com.au

Client:	ALS		
Client ID:	EP1900623_011 TB5		
Job No:	19_0098		
Laboratory ID:	19_0098_06		
Analysis:	X-ray sedimentation by Sedigraph 5100	Analysis temp.:	35.7°C
Dispersant:	Water	Sonication:	10 min
Additives:	10 mL sodium hexametaphosphate	Concentration:	~5 % w/w
Sample density:	2.694 g/cm ³ (assumed)		
Liquid density:	0.994 g/cm ³	Critical diameter:	53.88 µm
Liquid viscosity:	0.725 cp		

Fraction	Max size	Min size	In	Settling
name	(µm)	(µm)	%	velocity (ms ⁻¹)*
Gravel	10000	2000	1.2	4.50E+01
Sand	2000	60	29.8	1.33E+00
Silt	60	2	45.6	1.20E-03
Clay	2	1	3.5	2.81E-06
Sub-clay	1	0	19.9	3.12E-07
Total			100.0	

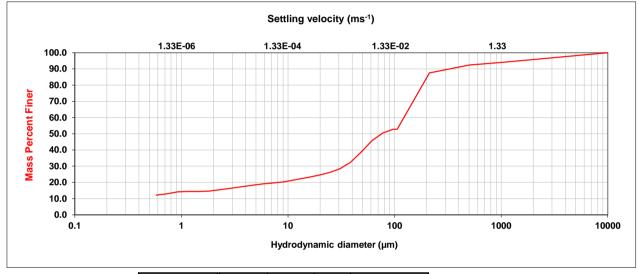

Reported by: Sumudu Ariyawansa, B.Sc.(Agriculture)(Hons), Dip.(Laboratory Technology)

Authorised by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

Note : Data from 106 μm to 10,000 μm by wet screening , from 0.3 μm to 106 μm by Sedimentation. * based on the mean of the size interval and on the the calculations and variables in the 'settling velocity worksheet Be Confident We See More www.microanalysis.com.au

Client:	ALS		
Client ID:	EP1900623_012 TB6		
Job No:	19_0098		
Laboratory ID:	19_0098_07		
Analysis:	X-ray sedimentation by Sedigraph 5100	Analysis temp.:	35.7⁰C
Dispersant:	Water	Sonication:	10 min
Additives:	10 mL sodium hexametaphosphate	Concentration:	~5 % w/w
Sample density:	2.739 g/cm ³ (assumed)		
Liquid density:	0.994 g/cm ³	Critical diameter:	53.36 µm
Liquid viscosity:	0.723 ср		

Fraction	Max size	Min size	In	Settling
name	(µm)	(µm)	%	velocity (ms ⁻¹)*
Gravel	10000	2000	15.0	4.50E+01
Sand	2000	60	50.0	1.33E+00
Silt	60	2	21.9	1.20E-03
Clay	2	1	1.5	2.81E-06
Sub-clay	1	0	11.6	3.12E-07
Total			100.0	

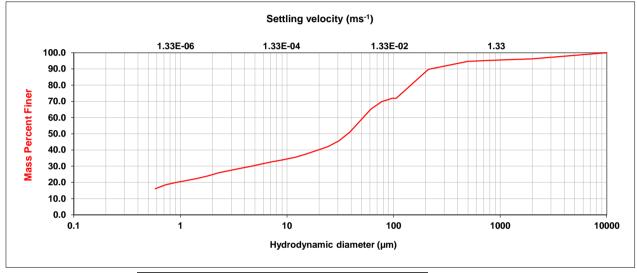

Reported by: Sumudu Ariyawansa, B.Sc.(Agriculture)(Hons), Dip.(Laboratory Technology)

Authorised by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

Note : Data from 106 μm to 10,000 μm by wet screening , from 0.3 μm to 106 μm by Sedimentation. * based on the mean of the size interval and on the the calculations and variables in the 'settling velocity worksheet Be Confident We See More www.microanalysis.com.au

Client:	ALS		
Client ID:	EP1900623_013 TB7		
Job No:	19_0098		
Laboratory ID:	19_0098_08		
Analysis:	X-ray sedimentation by Sedigraph 5100	Analysis temp.:	35.7ºC
Dispersant:	Water	Sonication:	10 min
Additives:	10 mL sodium hexametaphosphate	Concentration:	~5 % w/w
Sample density:	2.719 g/cm ³ (assumed)		
Liquid density:	0.994 g/cm ³	Critical diameter:	53.58 µm
Liquid viscosity:	0.723 cp		

Fraction	Max size	Min size	In	Settling
name	(µm)	(µm)	%	velocity (ms ⁻¹)*
Gravel	10000	2000	4.2	4.50E+01
Sand	2000	60	50.1	1.33E+00
Silt	60	2	30.2	1.20E-03
Clay	2	1	1.1	2.81E-06
Sub-clay	1	0	14.4	3.12E-07
Total			100.0	

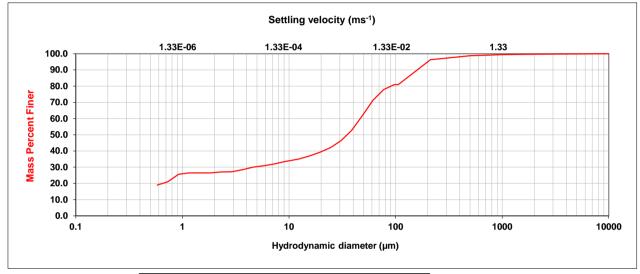

Reported by: Sumudu Ariyawansa, B.Sc.(Agriculture)(Hons), Dip.(Laboratory Technology)

Authorised by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

Note : Data from 106 μm to 10,000 μm by wet screening , from 0.3 μm to 106 μm by Sedimentation. * based on the mean of the size interval and on the the calculations and variables in the 'settling velocity worksheet Be Confident We See More www.microanalysis.com.au

Client:	ALS		
Client ID:	EP1900623_014 TB8		
Job No:	19_0098		
Laboratory ID:	19_0098_09		
Analysis:	X-ray sedimentation by Sedigraph 5100	Analysis temp.:	35.7°C
Dispersant:	Water	Sonication:	10 min
Additives:	10 mL sodium hexametaphosphate	Concentration:	~5 % w/w
Sample density:	2.723 g/cm ³ (assumed)		
Liquid density:	0.994 g/cm ³	Critical diameter:	53.58 µm
Liquid viscosity:	0.725 cp		

Fraction	Max size	Min size	In	Settling
name	(µm)	(µm)	%	velocity (ms ⁻¹)*
Gravel	10000	2000	3.8	4.50E+01
Sand	2000	60	31.0	1.33E+00
Silt	60	2	39.3	1.20E-03
Clay	2	1	4.8	2.81E-06
Sub-clay	1	0	21.2	3.12E-07
Total			100.0	


Reported by: Sumudu Ariyawansa, B.Sc.(Agriculture)(Hons), Dip.(Laboratory Technology)

Authorised by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

Note : Data from 106 μm to 10,000 μm by wet screening , from 0.3 μm to 106 μm by Sedimentation. * based on the mean of the size interval and on the the calculations and variables in the 'settling velocity worksheet Be Confident We See More www.microanalysis.com.au

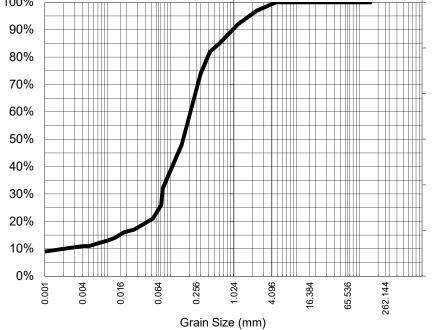
Client:	ALS		
Client ID:	EP1900623_015 TB10		
Job No:	19_0098		
Laboratory ID:	19_0098_10		
Analysis:	X-ray sedimentation by Sedigraph 5100	Analysis temp.:	35.7ºC
Dispersant:	Water	Sonication:	10 min
Additives:	10 mL sodium hexametaphosphate	Concentration:	~5 % w/w
Sample density:	2.699 g/cm ³ (assumed)		
Liquid density:	0.994 g/cm ³	Critical diameter:	53.82 µm
Liquid viscosity:	0.724 ср		

Fraction	Max size	Min size	In	Settling
name	(µm)	(µm)	%	velocity (ms ⁻¹)*
Gravel	10000	2000	0.3	4.50E+01
Sand	2000	60	28.4	1.33E+00
Silt	60	2	44.2	1.20E-03
Clay	2	1	0.6	2.81E-06
Sub-clay	1	0	26.4	3.12E-07
Total			100.0	

Reported by: Sumudu Ariyawansa, B.Sc.(Agriculture)(Hons), Dip.(Laboratory Technology)

Authorised by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

Note : Data from 106 μm to 10,000 μm by wet screening , from 0.3 μm to 106 μm by Sedimentation. * based on the mean of the size interval and on the the calculations and variables in the 'settling velocity worksheet Be Confident We See More www.microanalysis.com.au


ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT:	Claudio Deldeo	DATE REPORTED:	13-Mar-2019	
COMPANY:	WA MARINE PTY LTD	DATE RECEIVED:	6-Mar-2019	
ADDRESS:	Suite 5, 5/18 Griffon Drive PO Box 1370 Dunsborough, Perth WA	REPORT NO:	EP1902034-001 / PS	D
PROJECT:	18WAU-0002 Mardie Project: Sediment Sampling	SAMPLE ID:	RF1	
Particle Size Distribution	<u>n</u>		Particle Size (mm)	% Passing
100%	0.001			

Analysis Notes

Samples analysed as received.

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:

Loss on Pretreatment NA

Sample Description: SAND, FINES

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.75

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

0
100%
97%
92%
85%
82%
74%
48%
32%
21%
19%
17%
16%
14%
13%
12%
11%
9%

0.162 Median Particle Size (mm)*

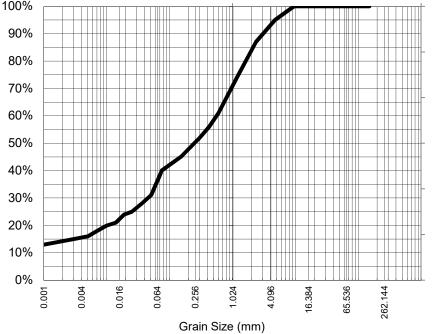
Analysed:

11-Mar-19

Limit of Reporting: 1%

Dispersion Method Shaker

ENTRATION.


ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT:	Claudio Deldeo	DATE REPORTED:	13-Mar-2019	
COMPANY:	WA MARINE PTY LTD	DATE RECEIVED:	6-Mar-2019	
ADDRESS:	Suite 5, 5/18 Griffon Drive PO Box 1370 Dunsborough, Perth WA	REPORT NO:	EP1902034-002 / PS	D
PROJECT:	18WAU-0002 Mardie Project: Sediment Sampling	SAMPLE ID:	RF2	
Particle Size Distribution			Particle Size (mm)	% Pass
100%	0.001	L		

Samples analysed as received.

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:

Loss on Pretreatment NA

Sample Description: SAND, FINES, STONE

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.72

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Particle Size (mm)	% Passing
9.50	100%
4.75	95%
2.36	87%
1.18	74%
0.600	61%
0.425	56%
0.300	52%
0.150	45%
0.075	40%
Particle Size (microns)	
51	31%
36	28%
25	25%
19	24%
14	21%
10	20%
7	18%
5	16%
1	13%

0.257 Median Particle Size (mm)*

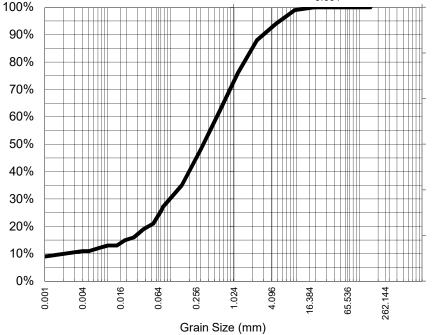
Analysed:

11-Mar-19

Limit of Reporting: 1%

Dispersion Method Shaker

ENTRATION.


ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT:	Claudio Deldeo	DATE REPORTED:	13-Mar-2019	
COMPANY:	WA MARINE PTY LTD	DATE RECEIVED:	6-Mar-2019	
ADDRESS:	Suite 5, 5/18 Griffon Drive PO Box 1370 Dunsborough, Perth WA	REPORT NO:	EP1902034-003 / PS	D
PROJECT:	18WAU-0002 Mardie Project: Sediment Sampling	SAMPLE ID:	RF3	
Particle Size Distribution	<u>1</u>		Particle Size (mm)	% Pass
	0.001			

Samples analysed as received.

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:

Loss on Pretreatment NA

SAND, FINES, STONE

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.7

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Particle Size (mm)	% Passing
19.0	100%
9.50	99%
4.75	94%
2.36	88%
1.18	76%
0.600	62%
0.425	55%
0.300	48%
0.150	35%
0.075	27%
Particle Size (microns)	
53	21%
37	19%
26	16%
19	15%
14	13%
10	13%
7	12%
5	11%
1	9%

Median Particle Size (mm)* 0.336

Analysed: 1

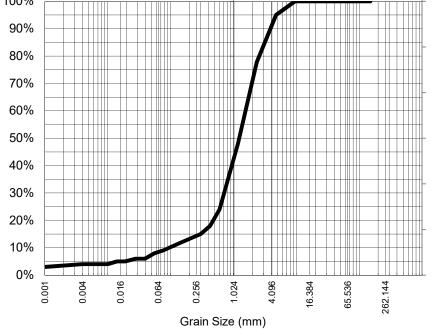
11-Mar-19

Limit of Reporting: 1%

Dispersion Method Shaker

LD SECO

ENTRATION.


ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT:	Claudio Deldeo	DATE REPORTED:	13-Mar-2019	
COMPANY:	WA MARINE PTY LTD	DATE RECEIVED:	6-Mar-2019	
ADDRESS:	Suite 5, 5/18 Griffon Drive PO Box 1370	REPORT NO:	EP1902034-004 / PS	D
PROJECT:	Dunsborough, Perth WA 18WAU-0002 Mardie Project: Sediment Sampling	SAMPLE ID:	RF4	
Particle Size Distribution	<u>n</u>		Particle Size (mm)	% Passir
100%	0.001			

Analysis Notes

Samples analysed as received.

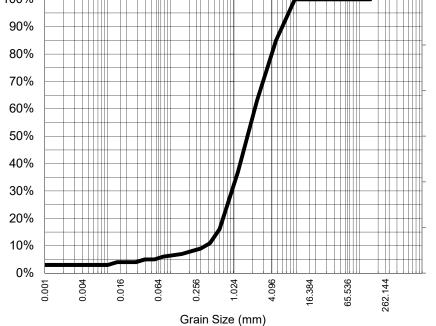
Particle Size (mm)	% Passing
9.50	100%
4.75	95%
2.36	78%
1.18	48%
0.600	24%
0.425	18%
0.300	15%
0.150	12%
0.075	9%
Particle Size (microns)	
55	8%
39	6%
28	6%
19	5%
14	5%
10	4%
7	4%
5	4%
1	3%

		Median Particle Size (mm)*	1.259
Median Particle Size is not cover	red under the current scope of ALS's NATA accreditation.		
Sample Comments:	AS1289.3.6.3 states that hydrometer analysis is not applicable for samples containing <10% fines (<75um). Results should be assessed accordingly	Analysed:	11-Mar-1
Loss on Pretreatment	NA	Limit of Reporting:	1%
Sample Description:	SAND, STONE, FINES	Dispersion Method	Shaker
<u>Test Method:</u>	AS1289.3.6.2/AS1289.3.6.3		
Soil Particle Density (<2	.36mm) 2.73	\frown	

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane Laboratory Coordinator Authorised Signatory

11-Mar-19


ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT:	Claudio Deldeo	DATE REPORTED:	13-Mar-2019	
COMPANY:	WA MARINE PTY LTD	DATE RECEIVED:	6-Mar-2019	
ADDRESS:	Suite 5, 5/18 Griffon Drive PO Box 1370	REPORT NO:	EP1902034-005 / PS	D
PROJECT:	Dunsborough, Perth WA 18WAU-0002 Mardie Project: Sediment Sampling	SAMPLE ID:	RF5	
Particle Size Distributio	<u>n</u>		Particle Size (mm)	% Passi
100%	0.001			

Particle Size (mm)	% Passing
9.50	100%
4.75	85%
2.36	63%
1.18	37%
0.600	16%
0.425	11%
0.300	9%
0.150	7%
0.075	6%
Particle Size (microns)	
55	5%
39	5%
28	4%
19	4%
14	4%
10	3%
7	3%
5	3%
1	3%

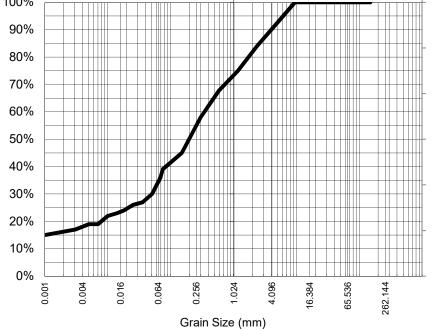
		Median Particle Size (mm)*	1.770
Median Particle Size is not cove	red under the current scope of ALS's NATA accreditation.		
Sample Comments:	AS1289.3.6.3 states that hydrometer analysis is not applicable for	Analysed:	11-Mar-19
	samples containing <10% fines (<75um). Results should be assessed		
	accordingly		4.07
Loss on Pretreatment	NA	Limit of Reporting:	1%
			.
Sample Description:	SAND, STONE, FINES	Dispersion Method	Shaker
<u>Test Method:</u>	AS1289.3.6.2/AS1289.3.6.3		
Soil Particle Density (<2	2.36mm) 2.72 🥒 🖊		

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane Laboratory Coordinator Authorised Signatory

Analysis Notes

Samples analysed as received.


ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT:	Claudio Deldeo	DATE REPORTED:	13-Mar-2019	
COMPANY:	WA MARINE PTY LTD	DATE RECEIVED:	6-Mar-2019	
ADDRESS:	Suite 5, 5/18 Griffon Drive PO Box 1370	REPORT NO:	EP1902034-006 / PS	D
PROJECT:	Dunsborough, Perth WA 18WAU-0002 Mardie Project: Sediment Sampling	SAMPLE ID:	RF6	
Particle Size Distribution	<u>n</u>		Particle Size (mm)	% Passing
100%	0.001			

Samples analysed as received.

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:

Loss on Pretreatment NA

Sample Description: SAND, FINES, STONE

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.73

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Particle Size (mm)	% Passing
9.50	100%
4.75	92%
2.36	84%
1.18	75%
0.600	68%
0.425	63%
0.300	58%
0.150	45%
0.075	39%
Particle Size (microns)	
51	30%
36	27%
25	26%
18	24%
14	23%
10	22%
7	19%
5	19%
1	15%

0.208 Median Particle Size (mm)*

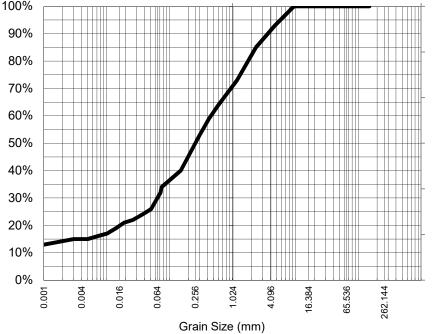
Analysed:

11-Mar-19

Limit of Reporting: 1%

Dispersion Method Shaker

ENTRATION.


ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT:	Claudio Deldeo	DATE REPORTED:	13-Mar-2019	
COMPANY:	WA MARINE PTY LTD	DATE RECEIVED:	6-Mar-2019	
ADDRESS:	Suite 5, 5/18 Griffon Drive PO Box 1370 Dunsborough, Perth WA	REPORT NO:	EP1902034-007 / PS	D
PROJECT:	18WAU-0002 Mardie Project: Sediment Sampling	SAMPLE ID:	RFB	
Particle Size Distribution			Particle Size (mm)	% Pass
100%	0.001			

Samples analysed as received.

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:

Loss on Pretreatment NA

Sample Description: SAND, FINES, STONE

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.72

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Particle Size (mm)	% Passing
9.50	100%
4.75	93%
2.36	85%
1.18	73%
0.600	64%
0.425	59%
0.300	53%
0.150	40%
0.075	34%
Particle Size (microns)	
51	26%
37	24%
26	22%
19	21%
14	19%
10	17%
7	16%
5	15%
1	13%

0.265 Median Particle Size (mm)*

Analysed:

11-Mar-19

Limit of Reporting: 1%

Dispersion Method Shaker

ENTRATION.

Appendix E Benthic Infauna Sampling

Appendix E: Mardie Benthic Infauna Sampling Results

METHODOLOGY

Macroinvertebrate sorting and taxonomy

Benthic samples were poured through a 500 μ m mesh sieve to separate fauna and sediment. Sieved samples were then transferred to labelled jars and preserved with 70 % isopropyl. Samples were kept at 4°C immediately after collection in the field and during transport to Carijoa in Perth, Western Australia. Samples were unpacked and checked for integrity upon delivery.

Picking of specimens from petri dishes was conducted under a dissecting microscope with all benthic fauna being separated from the sediment and counted. Picking quality assurance was done on 2 samples (10 % of the total samples) with a 5 % permissible error. Previous samples are checked if the error was greater than 5 % and repeated until a rate of less than 5 % was achieved.

Identification of benthic fauna was to the lowest taxonomic level possible dependent on the quality of the preservation of individual animals. A reference collection has been preserved and will be stored at Carijoa.

Analyses

Diversity indices

P.A.S.T v3.22 (Hammer et al. 2001) was used to calculate diversity indices in order to provide greater insight into community composition and included:

- Margalef's richness index (d): a richness index that calculates richness based on the total number of individuals in a sample
- Shannon's index (H): a diversity index that accounts for abundance and evenness
- Shannon's Evenness index (EH): an evenness index that calculates how evenly
 individuals are spread among species. Evenness is scaled on a value between 0 and 1
 (1 = complete evenness).
- Dominance (D, 1-Simpson Index): assesses taxon dominance within a sample and ranges between 0 (all taxa are equally present) to 1 (one taxon dominates the community completely)

Multivariate analyses

Raw abundance data was standardised to remove sampling bias due to variation of sample size within and between samples (sites). Standardised data was subsequently square root transformed to even out the contribution of common vs rarer taxa where higher abundance

of some taxa could overshadow the contribution of less common taxa. Community similarity analyses were carried out with Primer v6 software (Clarke & Gorley, 2006).

Cluster and Principle Coordinates analysis (PCO) was run on Bray Curtis similarity matrix and was performed to obtain an ordination of sites based on relative similarity in composition and abundance of the shared taxa. Canonical Analysis of Principle Coordinates (CAP) was then used to provide a constrained ordination of sites and to correlate the variables (taxa) with patterns on the CAP plot (Anderson and Willis, 2003, Anderson, 2003). This was done using vector overlays that show the strength and direction of the Spearman correlation of taxa relative to the axis of the plotted ordination and the pattern of the sites plotted according to their similarity to each other. This provides a strong indication of which taxa are contributing most to the plotted distribution and grouping of the sites.

At a coarser level, a one-way Analysis of Similarity (ANOSIM) was used to determine if there was a difference in community composition between the area allocated for the Turning Basin (TB2, TB6, TB8, TB10) and the area surrounding the outfall (O1, O2, O3). ANOSIM produces an R-value with a range from 0 (no difference in composition) – 1 (compositions are completely different). A Similarity Percentage (SIMPER) routine was used to determine which taxa are contributing to the similarity/dissimilarity between the two locations.

Feeding guilds

Classifying taxa according to feeding guilds can be useful for assessing impacts at the ecosystem level. The feeding guilds used to characterise the taxa from each sample are defined by MacDonald et al. (2010) and included:

- Food source
 - Epibenthic = above sediment or from water column
 - Surface = surface of sediment
 - Subsurface = below sediment surface
- Diet
 - Carnivorous = animal matter
 - Herbivorous = plant matter
 - Omnivorous = animal and plant matter
- Feeding mode
 - Deposit feeder = ingests sediment
 - Detritus feeder = ingests particular matter only, without sediment
 - Suspension/filter feeder = strains particles from the water
 - Predator = eats live animals only
 - Scavenger = carrion only
 - Grazer = feeds by scraping, either on algae or sessile animals
 - Browsing = feeds by tearing or gathering particular items

Feeding guilds were overlaid on nMDS plots to assess whether guilds could be contributing to any differences between sites.

Foraminifera

Foraminifera are single-celled organisms in the phylum Protista. The majority of species are benthic and feed on dissolved organic molecules, bacteria, diatoms and phytoplankton. Larger species may feed on small invertebrates such as copepods. Previous studies have demonstrated that benthic foraminifera could provide sensitive and inexpensive bioindicators of coastal environmental viability. In particular, benthic foraminifera have been used as proxies for measuring the impact of pollutants such as hydrocarbons, heavy metals and anoxic conditions (see Capotondi et al, 2015 and references therein). The most common foraminifera found in the benthic samples were counted to provide a qualitative representation only of their commonality and relative abundance.

RESULTS

In total, 128 individuals from 27 morphological species were identified (Table 1). The three most common taxa across all sites were Nematoda (n = 30), Sipuncula sp. (n = 25) and Polychaeta sp. 3 (n = 14). Polychaeta was the most diverse class in terms of the number of morphological species identified (14). TB8 had the highest number of morphological species identified (12) and TB2 had the lowest (3) (Table 1).

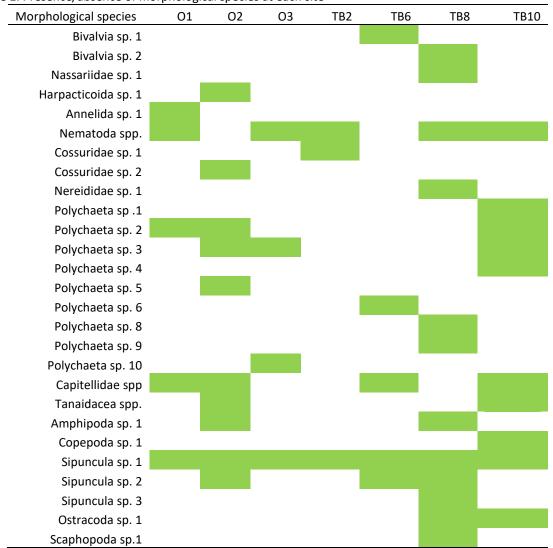


Table 1: Presence/absence of morphological species at each site

Diversity indices

Margalef's species richness index varied across sites, with TB8 having the highest index and O3 the lowest (Fig. 1). ANOVA revealed no significant difference in species richness between sites within the Turning Basin and sites surrounding the outfall (F = 0.149, p = 0.715).

Figure 1: Margalef's species richness index (d) across sites. Green = sites within the Turning Basin and blue = sites surrounding the outfall.

Shannon's H diversity measure varied across sites, with TB8 having the greatest diversity and O3 the lowest (Fig. 2). ANOVA revealed no significant difference in diversity between sites within the Turning Basin and sites surrounding the outfall (F = 0.227, p = 0.653).

Figure 2: Shannon's diversity index (H) across sites. Green = sites within the Turning Basin and blue = sites surrounding the outfall.

Shannon's Evenness was high across most sites indicating that individuals are distributed evenly among the different morphological species (Fig. 3). Site O3 was calculated to be 0.5 indicating some unevenness. ANOVA revealed no significant difference in evenness between sites within the Turning Basin and sites surrounding the outfall (F = 0.336, p = 0.587).



Figure 3: Shannon's evenness index (EH) across sites. Green = sites within the Turning Basin and blue = sites surrounding the outfall.

Dominance varied across sites but was generally low (< 0.4) for most sites indicating that no morphological species were dominating over others (Fig. 4). Some indication of dominance was observed for O3 which is attributed to the relative high number of Nematoda specimens found in the sample. ANOVA revealed no significant difference in dominance between sites within the Turning Basin and sites surrounding the outfall (F = 0.327, p = 0.592).

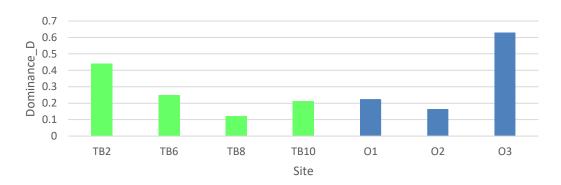


Figure 4: Dominance (D, 1-Simpson Index) across sites. Green = sites within the Turning Basin and blue = sites surrounding the outfall.

Community composition

Principle Coordinates analysis (PCO) showed that the first two principle components accounted for 62% of the variation of the dataset (Fig. 5). The PCO depicted a separation of the sites where TB10, O1 and O2 have 40% similarity and O3 and TB2 also have 40% similarity.

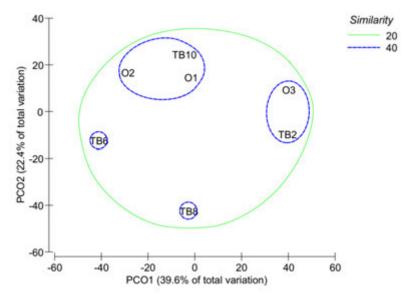


Figure 5. Principle Coordinates analysis (PCO) plot of component communities on Bray-Curtis similarity matrix of standardised, square root transformed abundance data. The first two principle components (x and y axis) accounted for 62 % of the variation of the dataset. Cluster analysis of 20 % and 40 % similarity revealed two groups of sites and two sites separated.

Canonical Analysis of Principle Coordinates (CAP) with vector overlay revealed the correlations (Spearman's rho >0.2) of taxa that characterise the differences between sites based on multivariate analysis (Table 2). The first CAP axis (CAP1) is highly correlated with Nematoda (Spearman's rho = 0.92) and Polychaeta sp.10 (Spearman's rho = 0.6) (Fig. 6), and negatively correlated with Sipuncula sp.2 (Spearman's rho = -0.89) and Capitellidae spp. (Spearman's rho = -0.65). The grouping of sites O1, O2 and TB10 is characterised by the presence of Polychaeta sp. 3, Polychaeta sp. 2 and Tanaidaceae spp. which are positively correlated to the second CAP axis (CAP2). Sites O3 and TB2 are characterised by Nematoda spp. and Polychaeta sp. 10 where the former was found in higher abundance at O3 and TB2 and Polychaeta sp. 10 was found only at site O3.The separation of site TB6 is characterised by Polychaeta sp. 6, Bivalvia sp. 1 and Capitellidae spp. Taxa that were negatively correlated with CAP2 included Bivalvia sp. 2, Nassariidae sp. 1, Nereididae sp. 1, Polychaeta sp. 8, Polychaeta sp. 9, Sipuncula sp. 3 and Scaphopoda sp. 1 and were found only in samples from TB8 (Table 2).

Таха	Correlation	TB2	TB10	03	01	02	TB6	TB8
Nematoda spp.	0.92	7.75	2.58	8.82	3.78	0.00	0.00	3.54
Polychaeta sp. 10	0.60	0.00	0.00	1.92	0.00	0.00	0.00	0.00
Cossuridae sp. 1	0.47	4.47	0.00	0.00	0.00	0.00	0.00	0.00
Harpacticoida sp. 1	-0.29	0.00	0.00	0.00	0.00	2.09	0.00	0.00
Cossuridae sp. 2	-0.29	0.00	0.00	0.00	0.00	2.09	0.00	0.00
Polychaeta sp. 5	-0.29	0.00	0.00	0.00	0.00	2.09	0.00	0.00
Bivalvia sp. 2	-0.29	0.00	0.00	0.00	0.00	0.00	0.00	2.04
Nassariidae sp. 1	-0.29	0.00	0.00	0.00	0.00	0.00	0.00	2.04
Nereididae sp. 1	-0.29	0.00	0.00	0.00	0.00	0.00	0.00	2.04
Polychaeta sp. 8	-0.29	0.00	0.00	0.00	0.00	0.00	0.00	2.04
Polychaeta sp. 9	-0.29	0.00	0.00	0.00	0.00	0.00	0.00	2.04
Sipuncula sp. 3	-0.29	0.00	0.00	0.00	0.00	0.00	0.00	2.89
Scaphopoda sp. 1	-0.29	0.00	0.00	0.00	0.00	0.00	0.00	3.54
Amphipoda sp. 1	-0.45	0.00	0.00	0.00	0.00	2.09	0.00	2.04
Bivalvia sp. 1	-0.63	0.00	0.00	0.00	0.00	0.00	2.89	0.00
Polychaeta sp. 6	-0.63	0.00	0.00	0.00	0.00	0.00	5.77	0.00
Capitellidae spp.	-0.65	0.00	3.65	0.00	3.78	4.66	5.00	0.00
Sipuncula sp. 2	-0.89	0.00	0.00	0.00	0.00	2.95	5.00	4.08

Table 2. Individual taxa showing Spearman's rho (>0.2) correlations with both canonical axes that separated the seven sites (see Fig. 6) along with their standardised, square root transformed abundance data.

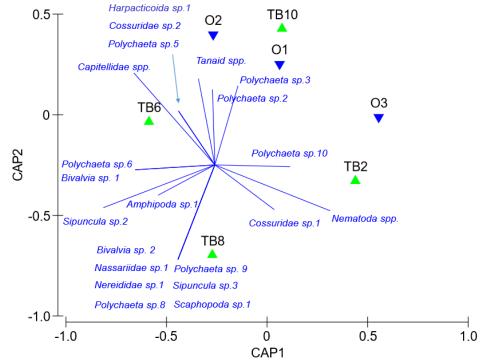


Figure 6. Canonical Analysis of Principle Coordinates (CAP) plot of component communities run on Bray Curtis similarity matrix of standardised, square root transformed abundance data. Taxa with correlations of Spearman's rho >0.2 with canonical axes are overlayed with vectors in order to characterise the dissimilarities in composition and abundance of taxa between sites (see Table 2).

Overall, there was no significant difference in community composition between sites in the Turning Basin and sites surrounding the outfall (ANOSIM R statistic = -0.278; p = 0.914) (Table 3). Community composition for sites within the Turning Basin were 27% similar, and 31% similar for sites surrounding the outfall. SIMPER revealed Sipuncula sp. 1, Nematoda spp. and Capitellidae spp. to characterise both locations and, in addition, Sipuncula sp. 2 and Polychaeta sp. 3 further characterised the Turning Basin and surrounding outfall area, respectively.

Table 3: One-way ANOSIM and SIMPER of benthic infauna communities. The species typical for each location are shown. Ave. diss. = average dissimilarity, Ave. simm. = average similarity. No significant difference in composition was found between the two locations.

	Turning Basin (TB)	Surrounding outfall (O)
Turning Basin (TB)	Ave. simm. = 26.7%	
	Sipuncula sp.1	
	Nematoda spp.	
	Sipuncula sp. 2	
	Capitellidae spp.	
Surrounding outfall (O)	R = -0.278	Ave. simm. = 30.8%
	p = 0.914	Sipuncula sp. 1
	Ave diss. = 65.7%	Nematoda spp.
		Polychaeta spp. 3
		Capitellidae spp.

Feeding guilds

Food source

Surface feeding was the most common source of food for all sites combined (61%), followed by subsurface feeding (36%) and epibenthic feeding (3%). Counts of each food source guild are overlaid as bubble plots on nMDS plots in Fig. 7. Surface and subsurface feeding was present at all sites and epibenthic feeding was only present at TB6, TB8, TB10 and O2.

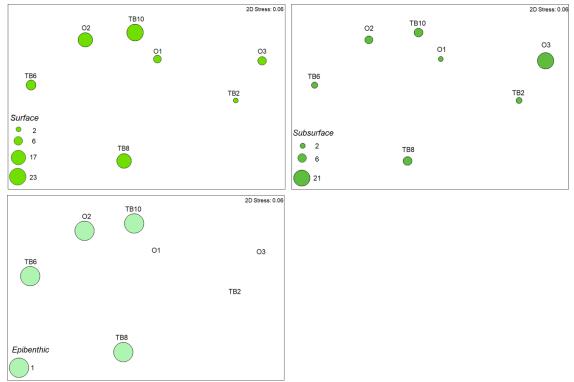


Figure 7: nMDS plots of community composition overlaid with food source guilds as bubble plots to indicate presence and dominance of guilds.

Diet

Omnivores dominated the diet feeding guilds (70%), followed by herbivores (28%) and carnivores (2%). Counts of each diet source guild are overlaid as bubble plots on nMDS plots in Fig. 8. Omnivores and herbivores were present at all sites, whereas carnivores were only present at TB8.

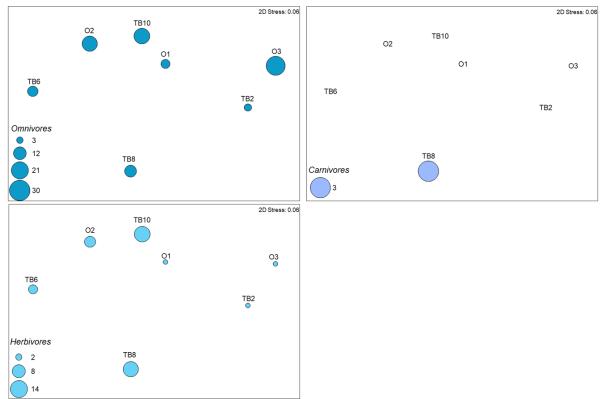


Figure 8: nMDS plots of community composition overlaid with diet guilds as bubble plots to indicate presence and dominance of guilds.

Feeding mode

The most common feeding mode was detritus feeding (44%) followed closely by browsers (35%). Grazers comprised 16%, while all other forms of feeding comprised less than 2%. Counts of each feeding mode guild are overlaid as bubble plots on nMDS plots in Fig. 9. Browsers and detritus feeders were present at all sites, and grazers at all sites except TB2. Suspension/filter feeders were present at TB6, TB8, TB10 and O2 and deposit feeders at only TB2 and O2. Predators and scavengers were only present at TB8.

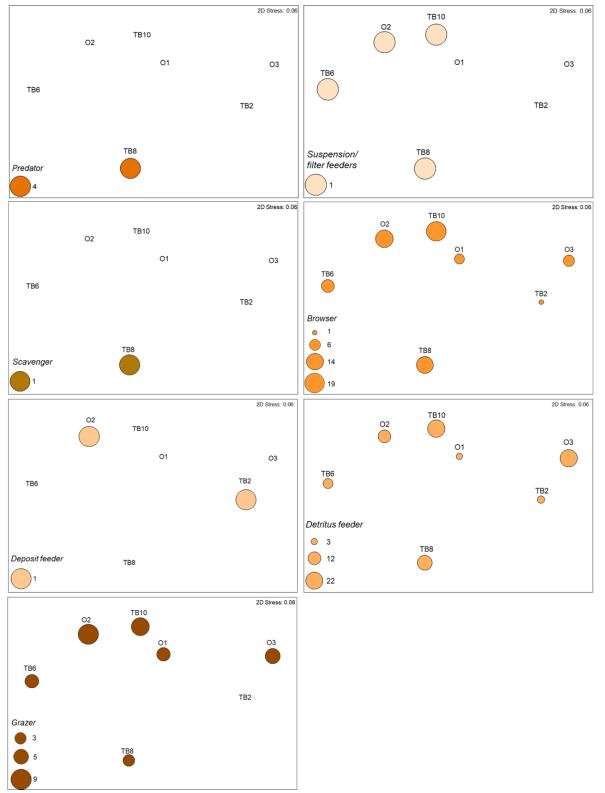


Figure 9: nMDS plots of community composition overlaid with feeding mode guilds as bubble plots to indicate presence and dominance of guilds.

Foraminifera

In total, 7718 individuals were counted from seven families, which included identification to genus for Spiroloculina spp. and Quinqueloculina spp. The family Peneroplidae spp. was the most abundant (n = 3913) and was found at all seven sites. Quinqueloculina spp. (n = 1643), Elphidiidae spp. (n = 1195) and Spiroloculina spp. (n = 758) were also present at all seven sites. Sorititdae spp. was present at all sites except TB6, Rotallidae spp. was present at all sites except O1 and Nodosariidaes pp. was present at all except TB2. It is likely that TB2 also contained living specimens from Nodosariidae spp., as fragments from what appeared to be Nodosariidae were found in the sample. Qualitative total percentage composition of the five families and two genera is shown in Fig. 10.

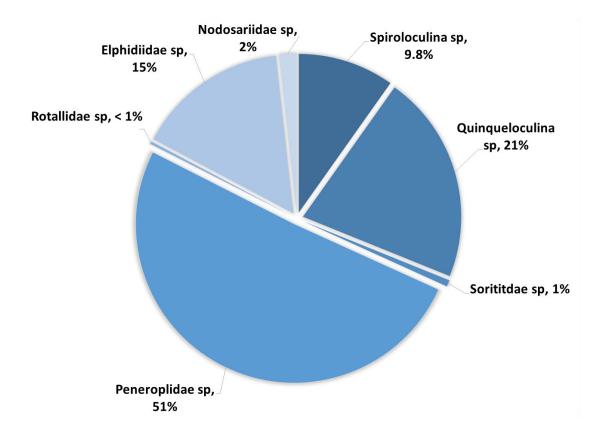


Figure 10. Qualitative total percent composition of *Foraminifera* families present in benthic samples.

DISCUSSION POINTS

- Species richness and diversity was highest at site TB8 and O2 with the lowest richness and diversity found at site O3. There was no significant difference in species richness or diversity indices across all the sites.
- There was no significant difference in evenness between sites within the Turning Basin and sites surrounding the outfall and all sites had high evenness suggesting that the abundances are distributed evenly among the different morphological species present.
- Composition of taxa varied at each site, most notably between TB8 and O3. However there was no significant difference in community composition between sites in the Turning Basin and sites surrounding the outfall.

- Surface feeding was the most common source of food for all sites and omnivores dominated across all sites.
- Previous studies suggest that the presence of Quinqueloculina spp. in relatively high abundance may be an indication of low environmental stress and that this particular genus of foraminifera could be considered a good bioindicator.

CONCLUSION

The distribution and abundance of taxa across the survey area is heterogeneous.

REFERENCES

Anderson, M.J., Willis, T.J. (2003) Canonical Analysis Of Principal Coordinates: A Useful Method Of Constrained Ordination For Ecology. Ecology, 84(2), pp. 511–525

Anderson, M.J. (2003) CAP: a FORTRAN computer program for canonical analysis of principal coordinates. Department of Statistics, University of Auckland, Auckland, N.Z.

Clarke, K.R., Gorley, R.N. (2006): PRIMER v6: user Manual/Tutorial. PRIMER-E Ltd: Plymouth

Capotondi, L., Bergami, C., Orsini, G., Ravaioli, M., Colantoni, P., Galeotti, S. (2015) Benthic foraminifera for environmental monitoring: a case study in the central Adriatic continental shelf. Environmental Science and Pollution Research. 22:6034–6049 DOI 10.1007/s11356-014-3778-7

Hammer, \emptyset ., Harper, D.A.T., and P. D. Ryan, 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4(1): 9pp

Macdonald, T.A., Burd, B.J., Macdonald, V.I., and van Roodselaar, A. (2010). Taxonomic and feeding guild classification for the marine benthic macroinvertebrates of the Strait of Georgia, British Columbia. Canadian Technical Report of Fisheries and Aquatic Sciences. 2874: iv + 63 p.